- Цели и задачи дисциплины
- Сформировать у слушателя понимание обобщенного подхода к основным понятиям и методам элементарных глав математического анализа и смежных областей алгебры и геометрии. С единой точки зрения изучить различные проблемы из специальных аналитических дисциплин (анализа, алгебры, дифференциальных уравнений, вариационного исчисления и т.п.) и устанавить связи между далекими на первый взгляд математическими теориями и тем самым способствовать более глубокому пониманию основных математических конструкций.
- Краткое содержание дисциплины
- Метрические пространства; открытые и замкнутые множества; компактные множества в метрических пространствах; полнота и пополнение; теорема о стягивающих шарах; принцип сжимающих отображений; топологические пространства; примеры. Множества, алгебра множеств; построение меры Лебега на прямой; общее понятие аддитивной меры; лебеговское продолжение меры; измеримые функции их свойства; определение интеграла Лебега; класс суммируемых функций; предельный переход под знаком интеграла; связь интеграла Лебега с интегралом Римана; интеграл Стилтьеса; теорема Радона – Никодима; прямое произведение мер и теорема Фубини; пространства L1, Lр (p>1); неравенства Гельдера и Минковского. Определение линейного нормированного пространства; примеры норм; банаховы пространства; сопряженное пространство, его полнота; теорема Хана – Банаха о продолжении линейного функционала; общий вид линейных функционалов в некоторых банаховых пространствах; линейные операторы; норма оператора; сопряженный оператор; принцип равномерной ограниченности; обратный оператор; спектр и резольвента; теорема Банаха об обратном операторе; компактные операторы; компактность интегральных операторов; понятие об индексе; теорема Фредгольма; примеры использования теоремы Фредгольма (задача Штурма – Лиувилля, теория потенциала, индекс дифференциального оператора). Скалярное произведение; неравенство Коши – Буняковского – Шварца; ортогональные системы; неравенство Бесселя; базисы и гильбертова размерность; теорема об изоморфизме, ортогональное дополнение; общий вид линейного функционала; самосопряженные (эрмитовы) и унитарные операторы; ортопроекторы; спектр эрмитова и унитарного оператора; теорема Гильберта о компактных эрмитовых операторах; функциональное исчисление; приведение оператора к виду умножения на функцию; спектральная теорема; неограниченные самосопряженные операторы; примеры
- Компетенции обучающегося, формируемые в результате освоения дисциплины
- Выпускник должен обладать:
- УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений
- Образование
- Учебный план 03.03.01, 2022, (4.0), Прикладные математика и физика
- Функциональный анализ