Цымблер Михаил Леонидович

Доктор физико-математических наук, доцент
Рабочий телефон: 
(351) 267-90-06, доб. 112
E-mail: 
mzym[at]susu[dot]ru
Сайт: 
Знание иностранных языков: 
английский
Научные интересы: 
Интеллектуальный анализ данных, параллельное программирование
Научные профили: 
Статьи и монографии за последние три года: 
Brain Tumor Classification Using Dense Efficient-Net / D.. Nayak //Axioms.–2022.–Vol. 11 No. 1
Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine / A.K. Das //Mathematics.–2022.–Vol. 10 No. 7
A Parallel Approach to Discords Discovery in Massive Time Series Data / Zymbler, M. //Computers, Materials and Continua.–2021.–Vol. 66 No. 2.– P.1867-1876
On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model / A.. Pradhan //Mathematics.–2021.–Vol. 9 No. 17
Zymbler, M. Matrix Profile-Based Approach to Industrial Sensor Data Analysis Inside RDBMS / M.. Zymbler, E.. Ivanova //Mathematics.–2021.–Vol. 9 No. 17
Иванова, Е.В. Внедрение концепции матричного профиля в реляционную СУБД для интеллектуального анализа временных рядов / Е.В. Иванова, М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика».–2021.–Том 10 № 3.– C.72-87
Очистка сенсорных данных в интеллектуальных системах управления отоплением зданий / М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика».–2021.–Том 10 № 3.– C.16-36
Цымблер, М.Л. Об одном методе восстановления пропущенных значений потокового временного ряда в режиме реального времени / М.Л. Цымблер, В.А. Полонский, А.А. Юртин //Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика».–2021.–Том 10 № 4.– C.5-25
Цымблер, М.Л. Поиск типичных подпоследовательностей временного ряда на графическом процессоре / М.Л. Цымблер, А.И. Гоглачев //Вычислительные методы и программирование: Новые вычислительные технологии (Электронный научный журнал).–2021.–Том 22 № 4.– C.344-359
A Deep Neural Network Approach to Predict the Wine Taste Preferences / Kraeva, Y. //Advances in Intelligent Systems and Computing.–2020.–Vol. 1125.– P.1165-1173
An Approach to Fuzzy Clustering of Big Data Inside a Parallel Relational DBMS / Zymbler, M. //Communications in Computer and Information Science.–2020.–Vol. 1223.– P.211-223
Analyzing MRI Scans to Detect Glioblastoma Tumor Using Hybrid Deep Belief Networks / A.. Reddy //Journal of Big Data.–2020.–Vol. 7 No. 1
Cleaning Sensor Data in Smart Heating Control System / Zymbler, M. //Proceedings - 2020 Global Smart Industry Conference, GloSIC 2020.–2020.– P.375-381
Digital Twin of City: Concept Overview / Ivanov, S. //Proceedings - 2020 Global Smart Industry Conference, GloSIC 2020.–2020.– P.178-186
Иванова, Е.В. Обзор современных систем обработки временных рядов / Е.В. Иванова, М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика».–2020.–Том 9 № 4.– C.79-97
Концепция построения цифрового двойника города / С.А. Иванов //Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика».–2020.–Том 9 № 4.– C.5-23
Цымблер, М.Л. Параллельный алгоритм поиска лейтмотивов временного ряда для графического процессора / М.Л. Цымблер, Я.А. Краева //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика.–2020.–Том 9 № 3.– C.17-34
Kraeva, Y. Scalable Algorithm for Subsequence Similarity Search in Very Large Time Series Data on Cluster of Phi KNL / Y.. Kraeva, M.. Zymbler //Communications in Computer and Information Science.–2019.–Vol. 1003.– P.149-164
KUMAR, S. A machine learning approach to analyze customer satisfaction from airline tweets / S.. KUMAR, M.. Zymbler //Journal of Big Data.–2019.–Vol. 6 No. 1
Kumar, S. Internet of Things is a revolutionary approach for future technology enhancement: a review / S.. Kumar, P.. Tiwari, M.. Zymbler //Journal of Big Data.–2019.–Vol. 6 No. 1
Using Delaunay Triangulation for Fingerprint Template Generation / В.Ю. Гудков //Вестник Южно-Уральского государственного университета. Серия «Компьютерные технологии, управление, радиоэлектроника».–2019.–Том 19 № 3.– C.33-41
Zymbler, M. Discovery of Time Series Motifs on Intel Many-Core Systems / M.. Zymbler, Y.. Kraeva //Lobachevskii Journal of Mathematics.–2019.–Vol. 40 No. 12.– P.2124-2132
Zymbler, M. Time Series Discord Discovery on Intel Many-Core Systems / M.. Zymbler, A.. Polyakov, M.. Kipnis //Communications in Computer and Information Science.–2019.–Vol. 1063.– P.168-182
Зыкин, В.С. Обновление многотабличных представлений на основе коммутативных преобразований базы данных / В.С. Зыкин, М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика.–2019.–Том 8 № 2.– C.92-106
Краева, Я.А. Совместное использование технологий MPI и OpenMP для параллельного поиска похожих подпоследовательностей в сверхбольших временных рядах на вычислительном кластере с узлами на базе многоядерных процессоров Intel Xeon Phi Knights Landing / Я.А. Краева, М.Л. Цымблер //Вычислительные методы и программирование: Новые вычислительные технологии (Электронный научный журнал).–2019.–Том 20 № 1.– C.29-44
Речкалов, Т.В. Параллельный алгоритм кластеризации данных для многоядерных ускорителей Intel MIC / Т.В. Речкалов, М.Л. Цымблер //Вычислительные методы и программирование: Новые вычислительные технологии (Электронный научный журнал).–2019.–Том 20 № 2.– C.104-115
Цымблер, М.Л. ОБЗОР МЕТОДОВ ИНТЕГРАЦИИ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА ДАННЫХ В СУБД / М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика.–2019.–Том 8 № 2.– C.32-62
Цымблер, М.Л. Параллельный алгоритм поиска диссонансов временного ряда для многоядерных ускорителей / М.Л. Цымблер //Вычислительные методы и программирование: Новые вычислительные технологии (Электронный научный журнал).–2019.–Том 20 № 3.– C.211-223
Цымблер, М.Л. Параллельный поиск частых наборов на многоядерных ускорителях Intel MIC / М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика.–2019.–Том 8 № 1.– C.54-70
Цымблер, М.Л. Поиск ассоциативных правил в суперкомпьютерных рейтингах Top500 и Топ50 / М.Л. Цымблер, П.И. Шумилин //ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ (ПАВТ'2019): Короткие статьи и описания плакатов XIII Международной научной конференции.–2019.– C.465-465
Kraeva, Y. An Efficient Subsequence Similarity Search on Modern Intel Many-core Processors for Data Intensive Applications / Y.. Kraeva, M.. Zymbler //CEUR Workshop Proceedings.–2018.–Vol. 2277.– P.143-151
Rechkalov, T.V A Study of Euclidean Distance Matrix Computation on Intel Many-Core Processors / T.V. Rechkalov, M.L. Zymbler //Communications in Computer and Information Science.–2018.–Vol. 910.– P.210-215
Rechkalov, T.V Integrating DBMS and Parallel Data Mining Algorithms for Modern Many-Core Processors / T.V. Rechkalov, M.L. Tcymbler //Communications in Computer and Information Science.–2018.–Vol. 822.– P.230-245
Use of Deep Learning for Sticker Detection during Continuous Casting / Faizullin, A. //Proceedings - 2018 Global Smart Industry Conference, GloSIC 2018.–2018
Zymbler, M. Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems / M.. Zymbler //Journal of Computing and Information Technology.–2018.–Vol. 26 No. 4.– P.209-221
Речкалов, Т.В. ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ ВЫЧИСЛЕНИЯ МАТРИЦЫ ЕВКЛИДОВЫХ РАССТОЯНИЙ ДЛЯ МНОГОЯДЕРНОГО ПРОЦЕССОРА INTEL XEON PHI ПОКОЛЕНИЯ KNIGHTS LANDING / Т.В. Речкалов, М.Л. Цымблер //Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика.–2018.–Том 7 № 3.– C.65-82
Sokolinsky, L.B Preface / L.B. Sokolinsky, M.L. Tcymbler //Communications in Computer and Information Science.–2017.–Vol. 753.– P.6-6
Tcymbler, M.L Accelerating Dynamic Itemset Counting on Intel many-core systems / M.L. Tcymbler //2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2017 - Proceedings.–2017.– P.1343-1348
Tcymbler, M.L An Approach to Data Mining Inside PostgreSQL Based on Parallel Implementation of UDFs / M.L. Tcymbler, T.V. Rechkalov //CEUR Workshop Proceedings.–2017.–Vol. 2022.– P.114-121
Цымблер, М.Л. Rechkalov T., Zymbler M. An Approach to Data Mining Inside PostgreSQL Based on Parallel Implementation of UDFs / М.Л. Цымблер //Аналитика и управление данными в областях с интенсивным использованием данных: Сборник научных трудов XIX Международной конференции DAMDID / RCDL'2017 (10–13 октября 2017 г., Москва, МГУ, Россия).–2017.–Том октябрь.– C.147-154
Участие во всероссийских и региональных научных конференциях: 
Большие данные в национальной экономике (2014)
Участие в международных научных конференциях: 
Параллельные вычислительные технологии (ПаВТ) 2019
Параллельные вычислительные технологии (ПаВТ) 2018
Международная научная конференция «Параллельные вычислительные технологии 2016» (2016)
MIPRO 2015 - 38th International Convention (2015)
Параллельные вычислительные технологии 2015
Параллельные вычислительные технологии 2014
Научный сервис в сети Интернет: многообразие суперкомпьютерных миров (2014)
Параллельные вычислительные технологии 2013
Научный сервис в сети Интернет: поиск новых решений (2012)
Финансируемые российские научно-исследовательские проекты и гранты: 
Грант РФФИ 20-07-00140-а «Разработка высокомасштабируемых методов и алгоритмов интеллектуального анализа сверхбольших временных рядов на вычислительных кластерах с многоядерными ускорителями» (2020–2022, руководитель)
Грант РФФИ 17-07-00463-а «Разработка высокомасштабируемых методов и алгоритмов интеллектуального анализа распределенных данных на высокопроизводительных компьютерных системах с кластерной архитектурой» (2017–2019, руководитель)
Кандидатские диссертации, защищённые под руководством НПР: 
Зыкин Владимир Сергеевич. Методы и алгоритмы поддержки целостности реляционных баз данных в приложениях классов OLAP и OLTP. Диссертационный совет Д 212.298.18 (Южно-Уральский государственный университет (национальный исследовательский университет)). 2020 г.
Пан Константин Сергеевич. Методы внедрения фрагментного параллелизма в последовательную СУБД с открытым исходным кодом. Диссертационный совет Д 212.298.18 (Южно-Уральский государственный университет (национальный исследовательский университет)). 2013 г.
Достижения, поощрения и награды: 
Диплом за победу в международном конкурсе SMS Group Data Challenge (2017 г.)
Диплом лауреата Конкурса прикладных разработок и исследований корпорации Intel в области компьютерных технологий «Компьютерный континуум: от идеи до воплощения» (2011 г.)
Почетная грамота Администрации города Челябинска за многолетнюю плодотворную работу по подготовке высококвалифицированных специалистов (2017 г.)
Почетная грамота Минобрнауки России за многолетний добросовестный труд в системе высшего профессионального образования (2013 г.)
Вы нашли ошибку в тексте:
Просто нажмите кнопку «Сообщить об ошибке» — этого достаточно. Также вы можете добавить комментарий.