Решение конструкторско-технологических задач с использованием физико-математических и вероятностно-статистических методов

Цели и задачи дисциплины
Целью дисциплины является получение знаний, умений и навыков изучения объектов и процессов, используя регрессионный анализ. Для достижения цели необходимо изучить следующие разделы теории вероятностей и математической статистики: – основные элементы теории вероятностей и математиче-ской статистики; – сущность и основные этапы регрессионного анализа; – статистические гипотезы, критерии и процедуру их применения.
Краткое содержание дисциплины
При исследовании технических систем могут использоваться тео-ретические и эмпирические методы познания. Любое из этих направ-лений обладает относительной самостоятельностью, имеет свои до-стоинства и недостатки. Теоретические методы в форме математиче-ских моделей позволяют описывать и объяснять взаимосвязи элемен-тов изучаемой системы или объекта в относительно широких диапа-зонах изменения переменных величин. Однако при построении теоретических моделей неизбежно введение каких-либо гипотез, допущений, ограничений и т. п. Поэтому возникает задача оценки достоверности (адекватности) полученной модели реальному процессу или объекту. Для этого проводится экспериментальная проверка разработанных теоретических моделей, так как только практика является объективным критерием истинности полученных знаний. Реальный эксперимент неизбежно отягощен случайными по-грешностями, связанными как с ограниченными возможностями при-боров, так и с влиянием неконтролируемых условий его проведения (в частности, с ошибками операторов). Поэтому корректные выводы по результатам эксперимента требуют их грамотной статистиче-ской обработки. Она направлена, как правило, на построение мате-матической модели исследуемого объекта или явления, а также на получение ответа на вопрос: «Достоверны ли полученные опытные данные в пределах требуемой точности или допусков?». Регрессионный анализ-раздел прикладной статистики, изучающий связь между переменной Y и одной или несколькими независимыми переменными. Для усвоение его сущности необходимо знание следующих разделов: 1 основные элементы теории вероятностей и математической статистики; 2 сущность и основные этапы регрессионного анализа; 3 статистические гипотезы, критерии и процедуру их применения.
Компетенции обучающегося, формируемые в результате освоения дисциплины
Выпускник должен обладать:
  • ПК-2 Способен участвовать в разработке и внедрении проектных решений технологического комплекса механосборочного производства, в организации на машиностроительных производствах рабочих мест, их технического оснащения, размещения оборудования, средств автоматизации, управления, эффективного контроля качества материалов, технологических процессов, готовой машиностроительной продукции и испытаний
Вы нашли ошибку в тексте:
Просто нажмите кнопку «Сообщить об ошибке» — этого достаточно. Также вы можете добавить комментарий.