ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Институт естественных и точных наук

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Юургу Сожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышлаева А. А. Пользователь: дамузываечава Дата подписания: 10-11.2021

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.25 Наноэлектроника для направления 11.03.04 Электроника и наноэлектроника уровень Бакалавриат форма обучения очная кафедра-разработчик Физика наноразмерных систем

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.03.04 Электроника и наноэлектроника, утверждённым приказом Минобрнауки от 19.09.2017 № 927

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Электронный документ, полписанный ПЭП, хранится в системе заектронного документооброта ПОХПО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Вороннов А. Г. Пользователь: vorontsovag

А. Г. Воронцов

Разработчик программы, д.физ.-мат.н., проф., профессор

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Южно-Уральского госудиретвенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Берелия В. М. Пользователь: berezirovn до 11 2021

В. М. Березин

СОГЛАСОВАНО

Руководитель направления д.физ.-мат.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (ОХВО) ТОХВО ТОХВ

А. Г. Воронцов

1. Цели и задачи дисциплины

Отразить приемственность нано- и микроэлектроники. Изучить особенности наноэлектроники (технологии, физической основы, конструкции и работы приборов) как принципиально нового направления техники и технологии в области электроники. Решаемые задачи: Изучить сущность новых технологий: нанолитографии, молекулярно- лучевой эпитаксии, зондовой микроскопии и т.п.. Научиться применять уравнения Шредингера для решения задач взаимодействия электронов с неоднородностями, потенциальными барьерами. Изучить варианты конструкций наноэлектронных транзисторов, диодов, конденсаторов, резисторов и других элементов ИМС.

Краткое содержание дисциплины

Введение в предмет. Основные тенденции интегральной электроники и их реализация в области минимальных технологических размеров менее 100 нм. Технологические особенности обусловленные увеличением степени интеграции на чипе и уменьшением размеров элементов микросхем. Повышенные требования к качеству кристаллов полупроводниковой основы микросхем. Новые методы получения чипов и реализации литографии при формировании топологии ИМС. Достоинства и проблемы, обусловленные новыми методами и технологиями. Туннелирование и интерференционные эффекты при электронном транспорте. Квантовая проводимость, эффект Холла, Аоронова-Бома. Применение стационарного одномерного уравнения Шредингера для решения задач электроники. Автоэлектронная эмиссия. Изучение конструктивных и технологических особенностей наноэлектронных транзисторов. диодов различного назначения, конденсаторов, химических источников тока, резисторов. Изучение электронных свойств наноструктур . Перспективы углеродной наноэлектроники.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине Знает: фундаментальные законы природы,
ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	определяющие функционирование объектов нанометровых размеров; отличительные особенности наноэлектронных систем Умеет: использовать законы физики для прогнозирования поведения наноэлектронных систем

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
геометрия, 1.О.19 Основы теории вероятности и стохастических процессов.	1.О.26 Интегральная электроника и нанооэлектроника, ФД.02 Квантовые технологии: состояние и перспективы

1.О.21 Материалы и компоненты электронной
техники,
1.О.07 Математический анализ,
1.О.10 Физика,
1.О.09 Дифференциальные уравнения,
1.О.15 Теоретические основы электротехники,
ФД.03 Наноструктурные материалы для
источников тока

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.09 Дифференциальные уравнения	Знает: области прикладного применения дифференциальных уравнений; Классификацию дифференциальных уравнений; основные способы решения дифференциальных уравнений Умеет: решать дифференциальные уравнения Имеет практический опыт: применения дифференциальных уравнений для решения задач
1.О.08 Линейная алгебра и аналитическая геометрия	Знает: области прикладного применения линейной алгебры и аналитической геометрии; основные определения и теоремы линейной алгебры и аналитической геометрии Умеет: применять методы линейной алгебры и аналитической геометрии для решения задач теоретического и прикладного характера Имеет практический опыт:
1.О.07 Математический анализ	Знает: области прикладного применения дифференциального и интегрального исчисления; основные определения и теоремы математического анализа Умеет: применять методы математического анализа для решения задач теоретического и прикладного характера Имеет практический опыт:
1.О.27 Введение в физику твердого тела	Знает: основные физические свойства материалов; физико-химические причины появления тех или иных свойств материалов Умеет: находить информацию о свойствах веществ Имеет практический опыт:
1.О.15 Теоретические основы электротехники	Знает: основные элементы электрических цепей, метода расчета электрических цепей Умеет: выполнять рассчеты параметров электрических цепей постоянного и переменного тока Имеет практический опыт: сборки электрических схем и выполнения измерений в электрических цепях
1.О.21 Материалы и компоненты электронной техники	Знает: основные материалы, используемые в электронике; ключевые компоненты, использующиеся в электронных схемах, основные методы экспериментального исследования свойств материалов и параметров компонентов электронной техники Умеет:

	осуществлять подбор материалов для изготовления электронной техники, проводить измерения свойств материалов и параметров компонентов электронной техники Имеет практический опыт: измерения свойств материалов, представления и обработки экспериментальных данных Знает: примеры практического использования
ФД.03 Наноструктурные материалы для источников тока	наноструктурных материалов;устройство и материалы современных источников тока Умеет: Имеет практический опыт:
1.О.19 Основы теории вероятности и стохастических процессов	Знает: области прикладного применения теории вероятностей и стохастических процессов; основные определения и теоремы теории вероятностей и стохастических процесов Умеет: находить вероятности в конкретных задачах, находить параметры распределений случайных величин и стохастических процессов Имеет практический опыт: нахождения параметров функции распределения случайной величины
1.О.10 Физика	Знает: фундаментальные законы природы и основные физические и математические законы, основы экспериментального метода исследования; методику обработки данных эксперимента, методики анализа физических систем, основные определения и законы физики Умеет: применять физические законы и математические методы для решения задач теоретического и прикладного характера, проводить простые эксперименты, грамотно представлять результаты измерений, оценивать погрешность, применять системный подход для решения физических задач Имеет практический опыт: использования знаний физики и математики при решении практических задач, проведения эксперимента, обработки экспериментальных данных

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 7 з.е., 252 ч., 112,75 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам в часах Номер семестра		
		5	6	
Общая трудоёмкость дисциплины	252	108	144	
Аудиторные занятия:	96	48	48	
Лекции (Л)	64	32	32	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	8	8	

Лабораторные работы (ЛР)	16	8	8
Самостоятельная работа (СРС)	139,25	53,75	85,5
с применением дистанционных образовательных технологий	0		
Подготовка к лабораторным и контрольным работам	79,25	33.75	45.5
Подготовка к экзамену	40	0	40
Подготовка к зачету.	20	20	0
Консультации и промежуточная аттестация	16,75	6,25	10,5
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в				
	Наименование разделов дисциплины	часах				
раздела		Всего	Л	П3	ЛР	
1	Введение в дисциплину	6	4	2	0	
2	Технологии наноэлектроники.	12	8	4	0	
3	Структуры пониженной размерности в наноэлектронике.	20	8	4	8	
4	Наноэлектронные приборы.	30	24	6	0	
5	Материалы наноэлектроники.	28	20	0	8	

5.1. Лекции

№	No	Получение и и и и и и и и и и и и и и и и и и	Кол-
лекции	раздела	Наименование или краткое содержание лекционного занятия	во часов
1,2	1	Наноэлектроника - как преемственость микроэлектроники. Тенденция на миниатюризацию и уменьшение потребления энергии при расширении функциональных возможностей.	4
3	2	Нанолитография. Экстремальный ультрафиолет. Эксимерные лазеры.	2
4	2	Электронолитография. Рентгенолитография. Принципы и особенности реализации.	2
5	2	Технология молекулярно- лучевой эпитаксии (МЛЭ).	2
6	2	Сканирующая и зондовая микроскопия.	2
7	3	Классификация структур и их электронные энергетические спектры.	2
8	3	Электронные размерные эффекты.	2
9	1 3	Классический и квантовый размерные эффекты электросопротивления тонких пленок.	2
10	3	Баллистический транспорт электронов в нанопроводниках.	2
11	4	КМОП- нанотранзисторы.	2
12	4	МНОП - и ЛИЗМОП транзисторы и их применение.	2
13	4	Нанодиоды различного назначения.	2
14	4	Наноконденсаторы и источники питания.	2
15	4	Оптоэлектронные наноприборы.	2
16	4	СВЧ нанотранзисторы.	2
17, 18.	4	Оптоэлектронные наноприборы. Приборы с внутренним усилением. Лавинные фотодиоды.	4
19, 20	4	Наноприборы функциональной электроники. Динамические неоднородности в наноэлектронике. Фононы, магноны, поляроны, микродомены и др.	4

		элементарные возбуждения как носители информации.	
21	4	Одноэлектроника и перспективы ее практической реализации. Идея одноэлектроники. Кулоновская блокада и туннелирование электрона.	2
22	4	Спинтроника.	2
23, 24	5	Полупроводниковые наноструктуры. Гетеропереходы. Сверхрешетки.	4
25, 26	5	Углеродные наноматериалы. Фуллерены. Нанотрубки. Графеноподобные материалы.	4
27, 28	5	Магнитные наноматериалы.	4
29, 30	5	Полимерные и органические материалы.	4
31	5	Пленки поверхностно-активных веществ.	2
32	5	Бионаноматериалы.	2

5.2. Практические занятия, семинары

<u>№</u> занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол-во часов
1	1	Введение в предмет.	2
2	2	Нанолитография.	2
3	2	Методы получения нанопленок.	2
4	3	2D- структура.	2
5	3	0D- и 1D-структуры.	2
6	4	Нанодиоды.	2
7	4	Нанотранзисторы.	2
8	4	УБИС, ГИС.	2

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1,2	3	Изучение вакуумной техники	4
3,4	1	Получение тонких пленок на стекле и измерение их электрических и оптических свойств.	4
5,6	5	Проверка закона Бугера -Ламберта на тонких пленках полуметаллов.	4
7,8)	Изучение краевых и размерных эффектов электросопротивления тонких пленок полуметаллов.	4

5.4. Самостоятельная работа студента

В			
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к лабораторным и контрольным работам	Игнатов, А. Н. Классическая электроника и наноэлектроника, стр. 478-596 Гельман М.В., Хусаинов Р.З., Бычков А.Е. Основы цифровой техники, стр. 9-58	6	45,5
Подготовка к лабораторным и контрольным работам	Игнатов, А. Н. Классическая электроника и наноэлектроника, стр. 372-408 Гельман М.В., Хусаинов Р.З., Бычков А.Е. Основы цифровой техники, стр. 9-58	5	33,75

Подготовка к экзамену	Щука, А. А. Электроника [Текст] учебное пособие для вузов по направлению 654100 - Электроника и микроэлектроника А. А. Щука 2-е изд., перераб. и доп СПб.: БХВ-Петербург, 2012 739 с. ил., стр. 429-446	6	40
Подготовка к зачету.	Щука, А. А. Электроника [Текст] учебное пособие для вузов по направлению 654100 - Электроника и микроэлектроника А. А. Щука 2-е изд., перераб. и доп СПб.: БХВ-Петербург, 2012 739 с. ил., стр. 301-365	5	20

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Вес Макс. балл Порядок начисления баллов		Учи- тыва- ется в ПА
1	5	Текущий контроль	Контрольная работа 1	15	5	5 баллов - все задания выполнены верно; 4 балла - задания выполнены верно, но с некритическими ошибками; 3 балла - часть заданий выполнена с грубыми ошибками; 2 балла - все задания выполнены с грубыми ошибками; 1 балл - выполнено с грубыми ошибками одно задание; 0 баллов - задания полностью не выполнены.	зачет
2	5	Текущий контроль	Контрольная работа 2	5 баллов - все задания выполнены верно; 4 балла - задания выполнень верно, но с некритическими ошибка 3 балла - часть заданий выполнена Контрольная			
3	5	Текущий Контрольная контроль работа 3		15	5	5 баллов - все задания выполнены верно; 4 балла - задания выполнены верно, но с некритическими ошибками; 3 балла - часть заданий выполнена с грубыми ошибками; 2 балла - все задания выполнены с грубыми ошибками; 1 балл - выполнено с грубыми ошибками одно задание; 0 баллов - задания полностью не	зачет

						выполнены.	
4	5	Проме- жуточная аттестация	Зачет	40	5	5 баллов выставляется за полное и исчерпывающее ответы на все задания билета; 4 балла - выполнены все задания, ответы содержат непринципиальные ошибки и неточности; 3 балла - ответы даны с грубыми ошибками; 2 балла - ответы на задания даны неверно, студент не понимает сути вопросов заданий; 1 балл - частично выполнено одно задание из билета с грубыми ошибками; 0 баллов - задания не выполнены.	зачет
5	6	Текущий контроль	Контрольная работа 1_6	15	5	5 баллов - все задания выполнены верно; 4 балла - задания выполнены верно, но с некритическими ошибками; 3 балла - часть заданий выполнена с грубыми ошибками; 2 балла - все задания выполнены с грубыми ошибками; 1 балл - выполнено с грубыми ошибками одно задание; 0 баллов - задания полностью не выполнены.	экзамен
6	6	Текущий контроль	Контрольная работа 2_6	15	5	5 баллов - все задания выполнены верно; 4 балла - задания выполнены верно, но с некритическими ошибками; 3 балла - часть заданий выполнена с грубыми ошибками; 2 балла - все задания выполнены с грубыми ошибками; 1 балл - выполнено с грубыми ошибками одно задание; 0 баллов - задания полностью не выполнены.	экзамен
7	6	Текущий контроль	Контрольная работа 3_6	15	5	5 баллов - все задания выполнены верно; 4 балла - задания выполнены верно, но с некритическими ошибками; 3 балла - часть заданий выполнена с грубыми ошибками; 2 балла - все задания выполнены с грубыми ошибками; 1 балл - выполнено с грубыми ошибками одно задание; 0 баллов - задания полностью не выполнены.	экзамен
8	5	Текущий контроль	Лабораторная работа 1	7,5	5	5 баллов - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, все вычисления выполнены верно, графики зависимостей построены в соответствии со стандартом ЮУрГУ; 4 балла - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, но в вычислениях присутствуют	зачет

						неточности/небольшие ошибки, графики зависимостей построены без указаний доверительных интервалов/без подписей и обозначений; 3 балла - студент выполнил лабораторную работу с ошибками в вычислениях, выводы по работе не показывают сути и результатов выполненной работы; 2 балла - выполнена экспериментальная часть работы, выполнена часть необходимых вычислений, отсутствуют выводы; 1 балл - выполнена только экспериментальная часть работы, отчет не оформлен;	
9	5	Текущий контроль	Лабораторная работа 2	7,5	5	обаллов - работа не выполнена. 5 баллов - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, все вычисления выполнены верно, графики зависимостей построены в соответствии со стандартом ЮУрГУ; 4 балла - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, но в вычислениях присутствуют неточности/небольшие ошибки, графики зависимостей построены без указаний доверительных интервалов/без подписей и обозначений; 3 балла - студент выполнил лабораторную работу с ошибками в вычислениях, выводы по работе не показывают сути и результатов выполненной работы; 2 балла - выполнена экспериментальная часть работы, выполнена часть необходимых вычислений, отсутствуют выводы; 1 балл - выполнена только экспериментальная часть работы, отчет не оформлен; 0 баллов - работа не выполнена.	зачет
10	6	Текущий контроль	Лабораторная работа 3	7,5	5	5 баллов - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, все вычисления выполнены верно, графики зависимостей построены в соответствии со стандартом ЮУрГУ; 4 балла - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, но в вычислениях присутствуют	экзамен

						неточности/небольшие ошибки, графики зависимостей построены без указаний доверительных интервалов/без подписей и обозначений; 3 балла - студент выполнил лабораторную работу с ошибками в вычислениях, выводы по работе не показывают сути и результатов выполненной работы; 2 балла - выполнена экспериментальная часть работы, выполнена часть необходимых вычислений, отсутствуют выводы; 1 балл - выполнена только экспериментальная часть работы, отчет	
						не оформлен; 0 баллов - работа не выполнена.	
11	6	Текущий контроль	Лабораторная работа 4	7,5	5	5 баллов - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, все вычисления выполнены верно, графики зависимостей построены в соответствии со стандартом ЮУрГУ; 4 балла - студент полностью выполнил лабораторную работу, сделал корректные выводы по работе, но в вычислениях присутствуют неточности/небольшие ошибки, графики зависимостей построены без указаний доверительных интервалов/без подписей и обозначений; 3 балла - студент выполнил лабораторную работу с ошибками в вычислениях, выводы по работе не показывают сути и результатов выполненной работы; 2 балла - выполнена экспериментальная часть работы, выполнена часть необходимых вычислений, отсутствуют выводы; 1 балл - выполнена только экспериментальная часть работы, отчет не оформлен; 0 баллов - работа не выполнена.	экзамен
12	6	Проме- жуточная аттестация	Экзаменационная работа	40	5	5 баллов выставляется за полное и исчерпывающее ответы на все задания билета; 4 балла - выполнены все задания, ответы содержат непринципиальные ошибки и неточности; 3 балла - ответы даны с грубыми ошибками; 2 балла - ответы на задания даны неверно, студент не понимает сути	экзамен

	вопросов заданий; 1 балл - частично выполнено одно задание из билета с грубыми ошибками; 0 баллов - задания не выполнены.	
--	---	--

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	чего сдают их на проверку экзаменатору. После проверки,	В соответствии с пп. 2.5, 2.6 Положения
экзамен	билеты, после чего сдают их на проверку экзаменатору. После	Положения

6.3. Оценочные материалы

Компетенции	Результаты обучения						№ KM											
Компетенции	т сзультаты обучения			3	4	5	6	7 8	39	1(11	12						
ОПК-1	Знает: фундаментальные законы природы, определяющие функционирование объектов нанометровых размеров; отличительные особенности наноэлектронных систем	+	+	+	+	+-	+-	+-	+-	+	+	+						
OHN-I	Умеет: использовать законы физики для прогнозирования поведения наноэлектронных систем	+	+	+	+	+	+-	+ -	+-	+	+	+						

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Щука, А. А. Электроника [Текст] учебное пособие для вузов по направлению 654100 Электроника и микроэлектроника А. А. Щука. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2012. 739 с. ил.
- б) дополнительная литература: Не предусмотрена
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Гельман М.В., Хусаинов Р.З., Бычков А.Е. Основы цифровой техники, Челябинск: ЮУрГУ, 2010

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Гельман М.В., Хусаинов Р.З., Бычков А.Е. Основы цифровой техники, Челябинск: ЮУрГУ, 2010

Электронная учебно-методическая документация

Ŋº	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
- 11	литература	библиотечная система	Классическая электроника и наноэлектроника : учебное пособие / А. Н. Игнатов, Н. Е. Фадеева, В. Л. Савиных [и др.]. — 3-е изд. — Москва : ФЛИНТА, 2017. — 728 с. https://e.lanbook.com/book/106860
2	литература	библиотечная система	Игнатов, А. Н. Наноэлектроника. Состояние и перспективы развития: учебное пособие / А. Н. Игнатов. — 2-е изд. — Москва: ФЛИНТА, 2017 https://e.lanbook.com/book/106861

Перечень используемого программного обеспечения:

1. Microsoft-Windows(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия	294 (3)	Учебные лабораторные стенды НПП "Учебная техника - Профи"