ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Кому выдан: Буйлушкина Л. Н. Подъователь: bullaskinaila 13 / 2024

Л. Н. Буйлушкина

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.14 Электротехника для направления 09.03.04 Программная инженерия уровень Бакалавриат форма обучения очная кафедра-разработчик Гуманитарные, естественно-научные и технические дисциплины

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 09.03.04 Программная инженерия, утверждённым приказом Минобрнауки от 19.09.2017 № 920

Зав.кафедрой разработчика, к.юрид.н., доц.

Разработчик программы, к.филос.н., доц., доцент

Эасктронный документ, подписанный ПЭП, хранитея в системе эасктронного документооборота Южиг-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Салимгарсева А. Р. Пользователь: slingarcevaar Liara водинешия: 3107 2024

Электронный документ, подписанный ПЭП, хранится в системе электронного документооброта ПОУрГУ СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Сокователь: пайочаів Зата подписания: 13 07 2024

А. Р. Салимгареева

И. Г. Рябова

1. Цели и задачи дисциплины

Цель дисциплины - освоение теоретических основ электротехники и электроники, приобретение знаний о конструкциях, принципах действия, параметрах ихарактеристиках различных электротехнических устройств, подготовка студента к пониманию принципа действия современного электрооборудования. Задачи дисциплины — показать роль и значение электротехнических знаний для успешной профессиональной деятельности; дать будущим специалистам базовые знания, необходимые для понимания сложных явлений и законов электротехники.

Краткое содержание дисциплины

Электрические цепи. Основные понятия и законы. Получение однофазного переменного тока. Расчёт цепей однофазного переменного тока с последовательным и параллельным соединением потребителей. Получение трёхфазной э.д.с. Расчёт цепей трёхфазного тока. Трансформаторы: устройство, принцип действия, схемы замещения, опыты х.х. и к.з., внешняя характеристика, к.п.д. Электрические машины постоянного и переменного тока: устройство, принцип действия, рабочие характеристики, пуск, регулирование скорости, торможение.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: основные законы и методы анализа цепей
	постоянного и переменного тока; методы анализа
	электрических цепей постоянного и переменного
	тока в переходном режиме; аналитические
ОПК-1 Способен применять естественнонаучные	методы расчета цепей с распределенными
и общеинженерные знания, методы	параметрами
математического анализа и моделирования,	Умеет: применять основные законы и методы
	анализа цепей постоянного и переменного тока;
исследования в профессиональной деятельности	Имеет практический опыт: применения методов
	анализа электрических цепей постоянного и
	переменного тока в переходном режиме;
	применения аналитических методов расчета
	цепей с распределенными параметрами

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
	1.О.09 Введение в 3D-моделирование и
1.О.13.02 Инженерная графика,	автоматизированное проектирование,
1.О.13.01 Начертательная геометрия,	1.О.15 Электроника и схемотехника,
1.О.11 Физика,	1.О.17 Метрология, стандартизация и
1.О.10.01 Алгебра и геометрия,	сертификация,
1.О.10.02 Математический анализ	1.О.10.04 Теория вероятностей и математическая
	статистика

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: основы линейной алгебры, включая
	линейные пространства, евклидовы
	пространства, квадратичные формы, линейные
	операторы; основы общей алгебры, включая
	теорию множеств, теорию упорядоченных
	множеств, основные алгебраические структуры
	Умеет: решать типовые математические задачи
	курса, использовать математический язык,
	алгебраические и геометрические методы при
	построении инженерно-технических моделей,
1.О.10.01 Алгебра и геометрия	применять методы линейной алгебры и
	аналитической геометрии для решения
	математических и прикладных задач
	информатики Имеет практический опыт:
	применения математических и количественных
	методов решения типовых технических задач, в
	работе с математической литературой и
	навыками применения современного
	математического инструментария для решения
	профессиональных задач
	Знает: методы решения задач профессиональной
	деятельности на основе математического
	анализа. Умеет: применять методы
1.О.10.02 Математический анализ	математического анализа для решения
I I	математических и прикладных задач
	информатики Имеет практический опыт:
	применения математического анализа в
	математике и компьютерных науках.
	Знает: фундаментальные разделы физики;
	методы и средства измерения физических
	величин; методы обработки экспериментальных
	данных Умеет: использовать знания
	фундаментальных основ, подходы и методы
	математики, физики в обучении и
	профессиональной деятельности, в
	интегрировании имеющихся знаний,
	наращивании накопленных знаний; применять
	математические методы, физические законы и
1.О.11 Физика	вычислительную технику для решения
1.O.11 Thylind	практических задач; работать с измерительными
	приборами; выполнять физический эксперимент,
	обрабатывать результаты измерений, строить
	графики и проводить графический анализ
	опытных данных; считать систематические и
	случайные ошибки прямых и косвенных
	измерений, приборные ошибки; применять
	современное физическое оборудование и
	приборы при решении практических задач;
	Имеет практический опыт: владения
	фундаментальными понятиями и основными

	законами классической и современной физики и методами их использования; методологией
	организации, планирования, проведения и
	обработки результатов экспериментов и
	экспериментальных исследований; навыками
	физического эксперимента и умения применять
	конкретное физическое содержание в
	прикладных задачах
	профессиональнойдеятельности; навыками
	проведения расчетов, как при решении задач, так
	и при научном эксперименте;
	Знает: методы проецирования и построения
	изображений геометрических фигур; принципы
	графического изображения деталей и узлов;
	основные правила построения и чтения чертежей
	технических объектов, правила оформления
	графических и текстовых документов в
	соответствии с требованиями ЕСКД; методы
	решения инженерно- геометрических задач на
	чертеже; правила выполнения чертежей деталей,
	сборочных единиц;, требования стандартов
	Единой системы конструкторской документации
	(ЕСКД) и Единой системы технической
	документации (ЕСТД) к оформлению и
	составлению чертежей Умеет: использовать
	законы начертательной геометрии и
	проекционного черчения при дальнейшем
1.О.13.02 Инженерная графика	обучении и для решения профессиональных
	инженерных задач; на основе методов
	построения изображений геометрических фигур
	решать различные позиционные и метрические
	задачи, относящиеся к этим фигурам,
	анализировать форму предметов в натуре и по
	чертежам; моделировать предметы по их
	изображениям; применять современные
	стандарты и средства проектирования Имеет
	практический опыт: решения метрических задач,
	пространственных объектов на чертежах;
	применения методов проецирования и
	изображения пространственных форм на
	плоскости проекций, выполнения и чтения
	чертежей и электрических схем, а также
	составления спецификаций в соответствии со
	стандартами ЕСКД
	Знает: основные законы геометрического
	формирования, построения и взаимного
	пересечения моделей плоскости и пространства,
	необходимые для выполнения и чтения
	чертежей; методы построения обратимых
1 O 12 O1 Hayanggayy yag paayagaya	чертежей пространственных объектов;, основы
1.О.13.01 Начертательная геометрия	оформления чертежей и эскизов деталей и
	документации; основные требования,
	предъявляемые к технической документации,
	материалам, изделиям; основные положения
	конструкторской документации Умеет: оставить
	цель и выбрать пути её достижения;
	1 J F1

воспринимать оптимальное соотношение частей и целого на основе графических моделей, практически реализуемых в виде чертежей конкретных пространственных объектов; решать метрические и позиционные задачи; использовать полученные графические знания и навыки в различных отраслях профессиональной деятельности; конструировать образы из геометрических поверхностей, самостоятельно использовать конструкторскую и технологическую документацию в объеме достаточном для решения профессиональных задач; выполнять чертежи деталей Имеет практический опыт: применения способов проецирования и изображения пространственных объектов; применение методов преобразования геометрических тел, применения типовых методов и способов выполнения и разработки проектноконструкторской документации; применения аналитических и графических методов и способов выполнения и разработки проектноконструкторской документации; работы в графических редакторах

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 74,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра
	1.4.4	3
Общая трудоёмкость дисциплины	144	144
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	69,5	69,5
Подготовка к контрольным работам по разделам	39,5	39.5
Подготовка к экзамену	30	30
Консультации и промежуточная аттестация	10,5	10,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

$\mathcal{N}_{\underline{o}}$	Haurayanayya naayayan yyayyyyyyy	Объем аудиторных занятий по видам в часах				
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР	
1	Электрические цепи	44	24	12	8	

		20	0	4	0
2	Электрические машины и устроиства	20	8	4	8

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основные понятия. Условное графическое обозначение элементов электрических схем. Положительное направление тока, напряжения, ЭДС. Режимы работы электрической цепи. Законы Кирхгофа. Закон Ома.	2
2,3	1	Основные параметры, характеризующие синусоидальную величину. Получение синусоидальной ЭДС. Действующее значение синусоидального тока и напряжения. Представление синусоидальных величин на комплексной плоскости. Цепь синусоидального тока с резистивным элементом. Векторная диаграмма. Закон Ома для действующих значений тока и напряжения, мгновенная, средняя и активная мощность цепи. Цепь синусоидального тока с индуктивным элементом. Векторная диаграмма. Закон Ома для действующих значений и комплексов действующих значений тока и напряжения. Реактивное индуктивное сопротивление. Мгновенная, средняя и реактивная мощности цепи. Физические процессы в цепи с индуктивным элементом. Цепь синусоидального тока с ёмкостным элементом. Векторная диаграмма. Закон Ома. Реактивное ёмкостное сопротивление. Мгновенная, средняя и реактивная мощность цепи. Физические процессы в цепи с ёмкостным элементом.	4
4,5	1	Цепь синусоидального тока с последовательным соединением. R, L, C. Векторная диаграмма. Треугольники напряжения, сопротивления, мощности. Активное, реактивное и полное сопротивление цепи. Активная, реактивная и полная мощность цепи. Расчёт цепи символическим методом. Расчёт цепи синусоидального тока с последовательным соединением потребителей. Векторная диаграмма. Сопротивление цепи. Мощность цепи. Примеры расчёта. Цепь синусоидального тока с параллельным соединением R, L, C. Векторная диаграмма. Треугольник тока. Мощность цепи. Расчёт цепи синусоидального тока с параллельным соединением потребителей. Активная и реактивная составляющие тока. Мощность цепи. Примеры расчёта цепи с параллельным соединением потребителей. Коэффициент мощности, его экономическое значение и способы повышения.	4
6		Методы преобразования цепей. Теорема об эквивалентном источнике эдс и источнике тока. Преобразование эквивалентной "звезды" и "треугольника"	2
7	1	Методы расчета разветвленных электрических цепей. Метод контурных токов, метод узловых потенциалов, метод наложения	2
8	1	Условие Дирихле для периодической функции. Ряд Фурье периодической функции. Тригонометрическое и комплексное представление ряда Фурье. Понятие о спектре периодического сигнала. Вычисление спектров	2
9		Индуктивно связанные цепи. Взаимная индукция. Согласованное и встречное включение. Идеальный трансформатор и его свойства	2
11,12	1	Трехфазные цепи. Диаграммы токов и напряжений в трехфазной цепи. Получение трёхфазной ЭДС. Достоинства. Соединение обмоток генератора по схеме «звезда». Условные положительные направления. Соединение потребителя по схеме «звезда». Фазные и линейные токи и напряжения потребителя. Расчёт цепи при симметричной нагрузке. Расчёт четырёхпроводной трёхфазной цепи при несимметричной нагрузке. Назначение нейтрального провода. Векторная диаграмма. Примеры расчёта цепи. Соединение приёмника по схеме «треугольник». Фазные и линейные токи и напряжения приёмника. Симметричный и несимметричный режимы	4

			r
		работы. Векторные диаграммы. Мощность трёхфазной цепи и ее измерение. Заземление в трехфазных цепях.	
12	1	Законы коммутации электрических цепей. Составление и решение дифференциальных уравнений, описывающих переходные процессы. Свободный и принужденный режимы. Вычисление токов и напряжений переходного процесса. Переходные процессы в разветвленных цепях	2
13	2	Магнитное поле в ферромагнетиках. Магнитопровод. Насыщение, остаточная намагниченность. Петля гистерезиса	2
14,15	2	Трансформаторы Назначение и область применения трансформаторов. Классификация по назначению. Устройство и принцип действия трансформатора. Условное графическое обозначение. Основные понятия. Режимы работы, коэффициент трансформации. Режим нагрузки трансформатора. Уравнения электрического равновесия и магнитодвижущей силы. Зависимость тока в первичной обмотке от режима работы. Внешняя характеристика, векторная диаграмма. Определение потерь в трансформаторе. КПД и его зависимость от нагрузки. Автотрансформаторы.	4
16	2	Асинхронные машины. Области применения асинхронных машин. Устройство трёхфазной асинхронной машины. Получение вращающегося магнитного поля. Скорость и направление вращения магнитного поля. Принцип действия трёхфазного асинхронного двигателя. Влияние нагрузки на скорость вращения ротора. Скольжение. Процессы в статоре и роторе асинхронной машины.	2

5.2. Практические занятия, семинары

№ занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Основные понятия. Законы Ома, Кирхгофа. Решение задач	2
2	1	Построение векторных диаграмм токов и напряжений в электрических цепях. Вычисление комплексных сопротивлений	2
3	1	Преобразование электрических цепей.	2
4		Расчет разветвленных цепей методами контурных токов, узловых потенциалов, методом наложения	2
5	1	Вычисление спектра последовательности прямоугольных импульсов	2
6		Вычисление токов и напряжений в индуктивно связанных цепях. Идеальный трансформатор	2
7	2	Расчет трехфазных цепей переменного тока	2
8	2	Расчет режимов работы асинхронного двигателя	2

5.3. Лабораторные работы

<u>№</u> занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	1	Линейные электрические цепи постоянного тока	2
2	1	Линейная неразветвтленная цепь однофазного синусоидального тока	2
3		Прохождение гармонического тока через интегрирующую RC-цепь. Изучение AЧX и ФЧX цепи.	2
4		Прохождение последовательности прямоугольных импульсов через дифференцирующие и интегрирующие RC-цепи	2
5	2	Трехфазная электрическая цепь при соединении потребителей "звезда"	2

6	2	Исследование трансформатора	2
7	2	Исследование трехфазного асинхронного двигателя	2
8	2	Исследование двигателя постоянного тока	2

5.4. Самостоятельная работа студента

Выполнение СРС			
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к контрольным работам по разделам	https://urait.ru/bcode/538840 https://e.lanbook.com/book/394682 https://new.znanium.com/read?id=335016 https://e.lanbook.com/book/112073	3	39,5
Подготовка к экзамену	https://urait.ru/bcode/538840 https://e.lanbook.com/book/394682 https://new.znanium.com/read?id=335016 https://e.lanbook.com/book/112073	3	30

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Проме- жуточная аттестация	контрольная работа 1	-	50	Начисляется пять баллов за каждую правильно решенную и оформленную контрольную задачу	экзамен
2	3	Проме- жуточная аттестация	Контрольная работа 2	-	50	Начисляется пять баллов за каждую верно решенную и оформленную задачу или контрольный вопрос	экзамен
3	3	Текущий контроль	Контрольные вопросы к разделу 1	1	10	Начисляется 2 балла за каждый правильный полностью обоснованный ответ	экзамен
4	3	Текущий контроль	Контрольные вопросы к разделу 2	1	10	Начисляется 2 балла за каждый правильный полностью обоснованный ответ	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	При оценивании результатов учебной деятельности по дисциплине используется балльно-рейтинговая система	В соответствии с пп. 2.5, 2.6

оценивания результатов учебной деятельности обучающихся	Положения
(утверждена приказом ректора от 24.05.2019 г. № 179 в ред. от	
10.03.2022). На аттестационном мероприятии (экзамен)	
проводится оценивание учебной деятельности обучающихся	
по дисциплине на основе полученных оценок за контрольно-	
рейтинговые мероприятия текущего контроля.	
Индивидуальный рейтинг обучающегося является основанием	
для выставления оценки по промежуточной аттестации.	
Рейтинг обучающегося по дисциплине определяется только по	
результатам текущего контроля. Студент вправе пройти	
контрольное мероприятие в рамках промежуточной аттестации	
для улучшения своего рейтинга.	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1		№ M	[4
OHK-I	Знает: основные законы и методы анализа цепей постоянного и переменного тока; методы анализа электрических цепей постоянного и переменного тока в переходном режиме; аналитические методы расчета цепей с распределенными параметрами	+	+	+	+
ОПК-1	Умеет: применять основные законы и методы анализа цепей постоянного и переменного тока;	+	+	+	+
ОПК-1	Имеет практический опыт: применения методов анализа электрических цепей постоянного и переменного тока в переходном режиме; применения аналитических методов расчета цепей с распределенными параметрами	+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Данилов, И.А. Общая электротехника с основами элекроники[Текст]: учеб. пособие / И.А.Данилов, П.М. Иванов.- М.: Высшее образование, 2000.- 752 с.
- б) дополнительная литература:
 - 1. Новожилов, О.П. Электротехника и электроника [Текст]: учебник для бакалавров / О.П. Новожилов.- М.: Издательство «Юрайт», 2012.- 653с.- ISBN 978-5-9916-1450-4.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Электрические цепи: учеб. пособие к лаб. работам / В. Н. Бородянко и др. Челябинск: Издательский Центр ЮУрГУ, 2015 97 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Электрические цепи: учеб. пособие к лаб. работам / В. Н. Бородянко и др. — Челябинск: Издательский Центр ЮУрГУ, 2015 — 97 с.

Электронная учебно-методическая документация

No	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	платформа Юраит	Миленина, С. А. Электротехника: учебник и практикум для вузов / С. А. Миленина, Н. К. Миленин; под ред. Н. К. Миленина. — 2-е изд., перераб. и доп. — Москва: Юрайт, 2024. — 263 с. —ISBN 978-5-534-05077-6. https://urait.ru/bcode/538840
2	Основная литература	Электронно- библиотечная система издательства Лань	*Иванов, И. И. Электротехника и основы электроники : учебник для вузов / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. — 13-е изд., стер. — Санкт-Петербург : Лань, 2024. — 736 с. — ISBN 978-5-507-47596-4. https://e.lanbook.com/book/394682
3	Дополнительная литература	Электронно- библиотечная система Znanium.com	Общая электротехника и электроника : учебник / Ю.А. Комиссаров, Г.И. Бабокин ; под ред. П.Д. Саркисова. — 2-е изд., испр. и доп. — М. : ИНФРА-М, 2019. — 479 с Режим доступа: https://new.znanium.com/read?id=335016
4	Дополнительная литература	Электронно- библиотечная система издательства Лань	Иванов, И. И. Электротехника и основы электроники: учебник / И. И. Иванов, Г. И. Соловьев, В. Я. Фролов. — 10-е изд., стер. — Санкт-Петербург: Лань, 2019. — 736 с. — ISBN 978-5-8114-0523-7.— URL: https://e.lanbook.com/book/112073
5	Дополнительная литература	Электронно- библиотечная система Znanium.com	Общая электротехника и электроника : учебник / Ю.А. Комиссаров, Г.И. Бабокин ; под ред. П.Д. Саркисова. — 2-е изд., испр. и доп. — М. : ИНФРА-М, 2019. — 479 с Режим доступа: https://new.znanium.com/read?id=335016

Перечень используемого программного обеспечения:

1. ФГАОУ ВО "ЮУрГУ (НИУ)"-Портал "Электронный ЮУрГУ" (https://edu.susu.ru)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -Консультант Плюс (Нижневартовск)(31.12.2024)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия		Лаборатория «Электротехника, электроника и средства измерений» № 236: Лабораторные стенды «Электротехника систем автоматизации»; Лабораторные стенды «Промышленные датчики»; Лабораторные стенды «Основы автоматики»; Лабораторные стенды «Универсальный электроннолучевой осциллограф»; Лабораторные стенды «Поверка амперметров и вольтметров»; Лабораторные стенды «Измерение сопротивлений на постоянном токе» Лабораторный стенд «Измерение

	потенциометром постоянного тока» Вольтметр универсальный В7-58 Осциллограф двулучевой С1-74 (б/у) Милливольтметр В3-55А (б/у) Частотомер Ф 5043 (б/у) Осциллограф С1-68. Компьютерный класс с доступом в Интернет
Лекции	Занятия студентов проходят в лекционных аудиториях филиала, оснащенных мультимедийным оборудованием (проектор, экран с электроприводом). печатная основная и дополнительная литература, словари находятся в фондах библиотеки, где также имеется доступ к материалам электронных библиотечных систем
Практические занятия и семинары	Лаборатория «Электротехника, электроника и средства измерений» № 236: Лабораторные стенды «Электротехника систем автоматизации»; Лабораторные стенды «Промышленные датчики»; Лабораторные стенды « Основы автоматики»; Лабораторные стенды «Универсальный электроннолучевой осциллограф»; Лабораторные стенды «Поверка амперметров и вольтметров»; Лабораторные стенды «Измерение сопротивлений на постоянном токе» Лабораторный стенд «Измерение потенциометром постоянного тока» Вольтметр универсальный В7-58 Осциллограф двулучевой С1-74 (б/у) Милливольтметр В3-55А (б/у) Частотомер Ф 5043 (б/у) Осциллограф С1-68. Компьютерный класс с доступом в Интернет