ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышляева А. А. Пользователь: атпуфлисачав Дата подписание: 21 и 5 2023

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П0.06 Дискретная математика и теория графов для направления 01.03.02 Прикладная математика и информатика уровень Бакалавриат профиль подготовки Математическое и программное обеспечение интеллектуальных систем форма обучения очная кафедра-разработчик Прикладная математика и программирование

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.03.02 Прикладная математика и информатика, утверждённым приказом Минобрнауки от 10.01.2018 № 9

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доцент

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога (Ожно-Уранского государственного унверентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Карпета Т В Польователь стояжнай карпета Т В польователь стоя

А. А. Замышляева

Т. В. Карпета

1. Цели и задачи дисциплины

Цель дисциплины: ознакомление с основными понятиями дискретной оптимизации. Задачи дисциплины: формирование представлений о теории сложности вычислений; развитие способности понимать, совершенствовать и применять современный математический аппарат; овладение методами решения задач дискретной оптимизации, развитие понимания условий их применения.

Краткое содержание дисциплины

Минимаксные теоремы Теоремы Форда — Фалкерсона, Холла, Кенига — Эгервари, Дилворта. Задача о назначениях и другие задачи о двудольных графах. Нахождение наибольшего паросочетания и наименьшего вершинного покрытия в двудольном графе. Венгерский алгоритм. Задача о назначениях на узкое место. Матроиды. Жадный алгоритм Определения и примеры. Двойственность. Представимые матроиды. Ранговая функция. Жадный алгоритм. Задача планирования эксперимента. Общие трансверсали. Сложность задач Задача выбора. Варианты задачи оптимизации. Классы Р NP. Полиномиальная сводимость. NP-полные задачи. Структура класса NP. Приближенные алгоритмы Определения. Приближённый алгоритм Кристофидеса решения метрической задачи коммивояжёра.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
метолы при формализации проектировании и	Знает: основные понятия дискретной математики и теории графов Умеет: использовать при решении различных задач стандартные приёмы дискретной математики

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
П ЈСНОВЫ МАТЕМАТИЧЕСКОЙ ПОГИКИ И ИНФОРМАТИКИ	Теория вероятностей и случайные процессы, Математическая статистика, Производственная практика (преддипломная) (8 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Основы математической логики и информатики	Знает: Умеет: применять язык математической логики при формализации, анализе и решении задач профессиональной деятельности Имеет практический опыт: создания алгоритмов решения прикладных задач на языке

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 70,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 2
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	37,75	37,75
Выполнение семестрового задания	7,75	7.75
Выполнение домашних заданий	14	14
Подготовка к экзамену	16	16
Консультации и промежуточная аттестация	6,25	6,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в					
	Наименование разделов дисциплины		часах				
раздела		Всего	Л	П3	ЛР		
1	Минимаксные теоремы	16	8	8	0		
2	Задача о назначениях и другие задачи о двудольных графах	26	8	18	0		
3	Матроиды. Жадный алгоритм	12	6	6	0		
4	Сложность задач	8	8	0	0		
5	Приближенные алгоритмы	2	2	0	0		

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1-2	l I	Теорема Холла. Теорема Пуанкаре. Дополняемость латинских прямоугольников до латинских квадратов.	4
3		Теорема Кенига – Эгервари. Дважды стохастические матрицы. Рёберно- хроматическое число графа. Теорема Визинга.	2
4		Теорема Дилворта. Двойственная теорема. Их приложения к различным задачам.	2
5-6	<i>1.</i>	Задачи о двудольных графах: нахождение наибольшего паросочетания и наименьшего вершинного покрытия.	4

7-8	2	Венгерский алгоритм решения задачи о назначениях; задача о назначениях на узкое место.	4
9-10	3	Матроиды: основные определения; двойственность; ранговая функция; жадный алгоритм; применение в задачах планирования эксперимента.	4
11	3	Трансверсальный матроид; общие трансверсали.	2
12-13	4	Сложность задач и алгоритмов: классы Р и NP; полиномиальное сведение.	4
14-15	4	NP-полные задачи, сведение их друг к другу	4
16	5	Приближенные алгоритмы: основные понятия; алгоритм Кристофидеса решения задачи коммивояжера	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара		
1-2	1	Теоремы Холла, Кёнига-Эгервари, Дилворта.	4	
3-4	1	Лемма Шпернера. Пополнение латинских квадратов.	4	
5	2	Задачи о двудольных графах: нахождение наибольшего паросочетания и наименьшего вершинного покрытия.	2	
6-7	2	Венгерский алгоритм решения задачи о назначениях; задача о назначениях на узкое место.	4	
8	2	Алгоритмы нахождения минимального стягивающего дерева	2	
9-10	2	Алгоритмы на ориентированных графах	4	
11	2	Знакомство с пакетом GeoGebra	2	
12-13	2	Работа с графами в математических пакетах	4	
14	3	Представимые матроиды	2	
15-16	3	Графические матроиды. Матроиды Фано и Вамоса.	4	

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Выполнение семестрового задания	Индивидуальные задания по дискретной математике: учебное пособие / А.Ю. Эвнин Челябинск. Издательский центр ЮУрГУ, 2013. С. 3-35.	2	7,75		
Выполнение домашних заданий	Эвнин, А. Ю. Дискретная математика Текст задачник: учеб. пособие для мат. специальностей ун-тов А. Ю. Эвнин; ЮжУрал. гос. ун-т, Каф. Прикл. математика; ЮУрГУ Челябинск: Издательский Центр ЮУрГУ, 2009 265 с. ил.	2	14		
Подготовка к экзамену	Эвнин А.Ю. Дискретная математика. Конспект лекций.	2	16		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
2	2	Текущий контроль	РГР Паросочетания и задача о назначениях	0,3	100	Балл равен проценту выполнения семестрового задания	зачет
3	2	Текущий контроль	Контрольная работа	0,3	100	Балл равен проценту решенных заданий из контрольной работы	зачет
4	2	Текущий контроль	Проверка работы на практических занятиях		100	На каждом практическом занятии студентам даётся задание по пройденному материалу. Балл по КМ равен проценту выполненных заданий в семестре.	зачет
5	2	Бонус	Участие в олимпиадах	-	15	5 баллов за участие в олимпиадах уровня университета 10 баллов за победу в олимпиаде уровня университета или участие в олимпиаде регионального уровня 15 баллов за победу в олимпиаде регионального уровня или участие в олимпиаде международного уровня	зачет
6	2	Проме- жуточная аттестация	Зачет	-	2	В билете 2 вопроса теоретических и 1 задача. За верное выполнение каждого задания начисляется 1 балл.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	выставлен по баллам текущего контроля. Студент может	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	№ KM 23456
ПК-6	Знает: основные понятия дискретной математики и теории графов	+++++

Умеет: использовать при решении различных задач стандартные приёмы дискретной математики ++++

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

ПК-6

- 1. Вся высшая математика Т. 7 Учеб. для втузов М. Л. Краснов, А. И. Киселев, Г. И. Макаренко и др. М.: КомКнига: URSS, 2006
- 2. Эвнин, А. Ю. Элементы дискретной оптимизации [Текст] учеб. пособие по специальности "Приклад. математика" и др. А. Ю. Эвнин ; Юж.-Урал. гос. ун-т, Каф. Приклад. математика ; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2012. 91, [1] с. ил. электрон. версия
- 3. Эвнин, А. Ю. ЮУрГУ Вокруг теоремы Холла [Текст] 57 упражнений с ответами и решениями : учеб. пособие для мат. специальностей ун-тов А. Ю. Эвнин. 2-е изд., перераб. и доп. М.: URSS : ЛИБРОКОМ, 2012. 87 с.
- б) дополнительная литература:
 - 1. Белоусов, А. И. Дискретная математика Учеб. для вузов А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина, А. П. Крищенко. М.: Издательство МГТУ, 2001. 743 с.
 - 2. Липский, В. Комбинаторика для программистов В. Липский; Пер. с польск. В. А. Евстигнеева, О. А. Логиновой; Под ред. А. П. Ершова. М.: Мир, 1988. 213 с. ил.
 - 3. Эвнин, А. Ю. Дискретная математика [Текст] конспект лекций А. Ю. Эвнин; Юж.-Урал. гос. ун-т, Каф. Приклад. математика; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 1998. 176 с. ил. электрон. версия
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Дискретная математика науч.-теорет. журн. Рос. акад. наук, Отдние математики журнал. М., 1989-
 - 2. Дискретный анализ и исследование операций науч. журн. Рос. акад. наук, Сиб. отд-ние, Ин-т математики им. С. Л. Соболева СО РАН журнал. Новосибирск, 2008-
- г) методические указания для студентов по освоению дисциплины:
 - 1. Индивидуальные задания по дискретной математике
 - 2. Элементы дискретной оптимизации

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Индивидуальные задания по дискретной математике
- 2. Элементы дискретной оптимизации

Электронная учебно-методическая документация

$N_{\underline{0}}$	Вид	Наименование	Библиографическое описание
---------------------	-----	--------------	----------------------------

	литературы	ресурса в электронной форме	
1	литература		Эвнин А.Ю. Теория графов и комбинаторика https://lib.susu.ru/ftd?base=SUSU_METHOD&key=000150855?base=SUS
2	дополнительная литература		Кузнецов, О.П. Дискретная математика для инженера https://e.lanbook.com
3	литература	CHCTANO	Acaнов M.O., Баранский В.А., Расин В.В. Дискретная математика: граф https://e.lanbook.com/book/130477

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Не предусмотрено