ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

П. А. Тараненко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.08 Расчетно-экспериментальное моделирование динамики машин

для направления 15.04.03 Прикладная механика **уровень** Магистратура

магистерская программа Компьютерное моделирование высокотехнологичных конструкций

форма обучения очная

кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 731

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., заведующий кафедрой

Электронный документ, подписанный ПЭП, хранител в енстеме электронного документооборота ПОУргУ Южно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: Інгаленкора

П. А. Тараненко

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского госудиретвенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Колу выдаи: Таршенко П. А. Поньзователь: taranenkopa пата подписания; 1708 2025

П. А. Тараненко

1. Цели и задачи дисциплины

Развитие у студентов представления о месте и роли расчетных и экспериментальных методов динамики машин при построении и анализе основных физических моделей, при проведении модальных и вибропрочностных испытаний. Приобретение опыта творческой работы по выбору адекватных расчетных схем разнообразных объектов современной техники и интерпретации их поведения. Приобретение опыта проведения экспериментов, анализа их результатов и построения компьютерных моделей, верифицированных результатами испытаний. Формирование умения комплексно решать инженерные задачи о динамике и прочности машиностроительных конструкций и изделий путем построения расчетной схемы, записи дифференциальных уравнений движения, выбора метода решения, последующего анализа результатов расчета, экспериментальной оценки динамических характеристик, оценки прочности конструкции и выработки практических рекомендаций. Достижение этих целей позволит выпускнику оценивать прочность машиностроительных конструкций при вибрационных воздействиях и строить адекватные динамические модели механических систем.

Краткое содержание дисциплины

Основные задачи динамики машин; построение расчетных схем и математических моделей. Вибрационные ударные воздействия и переходные процессы в конструкциях, машинах, оборудовании и аппаратуре. Характеристики внешних динамических воздействий. Анализ несущих и промежуточных конструкций. Единицы измерения вибраций и шума. Излучение шума; распространение шума; влияние шума и вибрации на человеческий организм. Защита человека от вибрации. Постановка задачи виброударозащиты машин; динамические модели для решения задач виброударозащиты во временной и частотной областях. Оценка отклика объектов на действие виброударных нагрузок. Прямые и идентификационные методы построения динамических моделей машин, оборудования и аппаратуры. Системы виброударозащиты объектов. Структура систем виброударозащиты. Методы исследования пассивных и активных систем виброударозащиты. Оптимизация систем виброударозащиты. Определение оптимального управления виброизолируемыми объектами. Активные и регулируемые системы виброзащиты. Защита машин, оборудования и аппаратуры от нестационарных вибраций. Динамические расчеты рабочих режимов и балансировка роторных машин. Вибрация трубопроводов, кабелей и других протяженных сетей. Ветровой резонанс башенных сооружений. Критерии качества систем виброударозащиты. Виброизоляция. Управляемые системы виброизоляции. Динамическое гашение колебаний. Способы возбуждения вибрации, режимы вибронагружения и схемы виброиспытаний.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
	Знает: основные расчетные и экспериментальные
технических проблем, возникающих в ходе	методы исследования динамики машин

профессиональной деятельности, и привлекать для их решения соответствующий физикоматематический аппарат, вычислительные методы и компьютерные технологии, а также экспериментальные методы исследований	Умеет: получать расчетным путем перемещения, скорости и ускорения изделия при гармонических, случайных и ударных нагрузках Имеет практический опыт: владения конечноэлементным пакетом Ansys Workbench для расчета гармонических, ударных и
	случайных колебаний механических систем
ПК-2 Готовность овладевать новыми современными методами и средствами проведения экспериментальных исследований по динамике, прочности и надежности машин и приборов, обрабатывать, анализировать и обобщать результаты экспериментов	Знает: современные конечноэлементные методы расчета динамики роторов Умеет: получать экспериментальным путем перемещения, скорости и ускорения изделия при гармонических, случайных и ударных нагрузках Имеет практический опыт: владения современной аппаратурой и программным обеспечением для проведения модальных и вибропрочностных испытаний

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Цифровые двойники динамических систем, Механика композитных материалов, Реологические свойства материалов при циклическом деформировании, Деформационные свойства материалов при неупругом циклическом деформировании, Имитационное моделирование, Мониторинг состояния конструкций, Компьютерное моделирование в механике	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Компьютерное моделирование в механике	Знает: роль компьютерного моделирования в общей системе расчетно-экспериментального изучения прочности конструкций; способы построения профессиональной траектории с учетом накопленного опыта и динамично изменяющихся требований рынка труда, возможности современных систем компьютерного инжиниринга (САЕ), основной набор расчетно-теоретических и экспериментальных методов исследования задач прочности конструкций Умеет: искать информацию о развивающихся возможностях систем математического (численного) моделирования поведения конструкций, осваивать и применять их на практике, применять САЕ-системы для решения профессиональных задач, выбирать методы и средства компьютерного моделирования с учетом

основных особенностей рассматриваемой задачи Имеет практический опыт: сравнения различных возможных подходов к решению задач прочности конкретных конструкций, расчетов напряженно-деформированного состояния и разрушения конструкций с помощью современных пакетов программ, применения вычислительных технологий в задачах описания повторно-переменного неизотермического неупругого деформирования и разрушения конструкций Знает: основные эффекты, методы и испытательное оборудование для их экспериментального изучения, а также существующие математические модели теории пластичности и ползучести, применимые в условиях монотонного и циклического нагружения при нормальной и повышенной температуре, современные подходы, в том числе, математические модели, к анализу напряженнодеформированного состояния конструкционных материалов за пределами упругости с учетом вязкой составляющей в условиях монотонного и циклического нагружения при нормальной и повышенной температуре Умеет: проводить экспериментальные исследования и применять математические модели деформирования неупругого материала для анализа напряженнодеформированного состояния элементов конструкций в условиях монотонного и Деформационные свойства материалов при циклического нагружения при нормальной и неупругом циклическом деформировании повышенной температуре, применять в профессиональной деятельности современные теории, физико-математические и численные методы исследования закономерностей деформирования металлических конструкционных материалов, элементов конструкций в условиях монотонного и циклического нагружения Имеет практический опыт: проведения экспериментальных исследований и расчетов, а также навыки использования пакетов прикладных программ для оценки напряженно-деформированного состояния элементов конструкций с учетом ползучести при монотонном и циклическом нагружении, расчетов и навыки использования пакетов прикладных программ, а также новых систем компьютерного проектирования и компьютерного инжиниринга для оценки прочности и жесткости элементов конструкций Знает: методы и средства технического диагностирования как средства повышения экономичности и надежности конструкции в Мониторинг состояния конструкций процессе проектирования и эксплуатации, методы технической диагностики, особенности оценки технического состояния

	1
	диагностируемых систем, алгоритмы и
	техническое обеспечение систем диагностики,
	современные автоматизированные системы
	технической диагностики объектов Умеет:
	пользоваться методикой оценки остаточного
	ресурса оборудования и поиска неисправностей
	на основе данных мониторинга; формулировать
	задачу и способ ее решения, оценивать
	эффективность автоматизированных системам технической диагностики в общей структуре
	АСУ ТП, пользоваться методами и средствами
	технической диагностики для проведения
	научно-исследовательских, расчетных и
	экспериментальных работ по динамике,
	прочности и надежности машин и приборов.
	Имеет практический опыт: по выбору метода и
	средств мониторинга состояния объекта; выбор
	диагностических параметров и критериев
	работоспособности, использования современных
	средств измерений, программных продуктов,
	предназначенных для обеспечения работы в
	реальном времени систем сбора, обработки,
	отображения и архивирования информации об
	объекте мониторинга, использования новых
	современных методов и средств проведения
	диагностики объектов в области прикладной
	механики и обобщать результаты мониторинга
	Знает: основные расчетные и экспериментальные
	методы исследования динамических свойств
	изделий, критерии подтверждения (проверки)
	адекватности создаваемой модальной
	математической модели Умеет: определять
	динамические свойства изделий при
	виброиспытаниях и экспериментальном
	модальном анализе, создавать математическую
Цифровые двойники динамических систем	модель динамической системы,
	верифицированную результатами модальных
	испытаний Имеет практический опыт:
	современной аппаратурой и программным
	обеспечением для проведения и обработки
	результатов модальных и вибропрочностных
	испытаний, методами корректировки (уточнения)
	расчетной модальной математической модели по
	экспериментальным данным
	Знает: вычислительные методы и компьютерные
	технологии для решения научно-технических
	проблем, возникающих в ходе профессиональной
	деятельности, современные коммуникативные
	технологии; основные принципы подготовки
Механика композитных материалов	доклада и презентации, общие принципы и
1	методы математического компьютерного
	моделирования в области композитных
	материалов и конструкций; современные
	технологии производства композитных
	материалов и конструкций; методы испытаний
1	композитов, особенности структуры и свойств

композитных материалов по сравнению с традиционными конструкционными материалами; современные методы математического моделирования в области использования композитных материалов и конструкций на микро-, мезо- и макроуровне рассмотрения неоднородностей структуры и свойств Умеет: уметь выявлять сущность научнотехнических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их решения соответствующий физикоматематический аппарат, применять современные коммуникативные технологии, понимать технические тексты на иностранном языке, применять физико-математический аппарат, вычислительные методы и компьютерные технологии в профессиональной деятельности для описания свойств композитных материалов и конструкций, применять методы математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций; оценивать эффективность и результативность выбранных методов методов Имеет практический опыт: подготовки доклада на заданную тему и презентации; восприятия видео по тематике курса на иностранном языке; чтения технических текстов на иностранном языке, применения физико-математического аппарата, методов математического и компьютерного моделирования для разработки компьютерной модели композитного материала, использования методов математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций

Реологические свойства материалов при циклическом деформировании

Знает: особенности циклического деформирования неупругих материалов, основные эффекты, методы и испытательное оборудование для их экспериментального изучения, а также существующие математические модели реологии, применимые в условиях монотонного и циклического нагружения при нормальной и повышенной температуре Умеет: применять в профессиональной деятельности методы исследования закономерностей циклического деформирования неупругих материалов, проводить экспериментальные исследования и применять математические модели деформирования склерономного и реономного материала для анализа напряженнодеформированного состояния элементов конструкций в условиях монотонного и циклического нагружения при нормальной и

	повышенной температуре Имеет практический
	опыт: оценки прочности и жесткости
	конструкций при малоцикловом
	деформировании, проведения
	экспериментальных исследований и расчетов, а
	также навыки использования пакетов
	прикладных программ для оценки напряженно-
	деформированного состояния элементов
	конструкций с учетом реологических свойств
	материала при монотонном и циклическом
	нагружении
	Знает: виды и способы создания математических
	моделей материалов и конструкций Умеет:
Имитанномное молению разина	разрабатывать математические модели для
Имитационное моделирование	систем, объектов, процессов и физических
	явлений Имеет практический опыт: реализации
	математических моделей на ЭВМ

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 5 з.е., 180 ч., 96,75 ч. контактной работы

D	Всего	Распределение по семестрам в часах		
Вид учебной работы	часов	Номер семестра		
		3	4	
Общая трудоёмкость дисциплины	180	108	72	
Аудиторные занятия:	84	48	36	
Лекции (Л)	28	16	12	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	56	32	24	
Лабораторные работы (ЛР)	0	0	0	
Самостоятельная работа (СРС)	83,25	53,75	29,5	
Подготовка к зачету	53,75	53.75	0	
Подготовка к экзамену	29,5	0	29.5	
Консультации и промежуточная аттестация	12,75	6,25	6,5	
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет	экзамен	

5. Содержание дисциплины

No	Наумамарамуа раздалар дуамундууу	Объем аудиторных занятий по видам в часах			
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР
01	Виброиспытания	24	10	14	0
02	Виброзащита. Виброизоляция.	12	2	10	0
03	Динамическое гашение колебаний	12	4	8	0
04	Решение задач динамики в Ansys Workbench	36	12	24	0

5.1. Лекции

№	No	Наименование или краткое содержание лекционного занятия	Кол-
лекции	раздела	тапменование изи краткое водержание лекционного запити	часов
01	01	Виброиспытания. Три вида виброиспытаний: частотные, вибропрочностные, испытания на виброустойчивость. Цели и методы. Режимы виброиспытаний. Способы возбуждения вибраций. Механический, гидравлический, электромагнитный, электродинамический, магнитострикционный, пьезоэлектрический акустический. Характеристики вибровозбудителей, достоинства и недостатки, области применения.	2
02	01	Экспериментальный модальный анализ	2
03	01	Виброиспытания при синусоидальном, случайном и ударном возбуждении	2
04	01	Режимы вибронагружения и схемы испытаний. Классификация объектов испытаний. Воспроизведение нормативной спектральной плотности виброускорений в заданной точке объекта. Транспортный и эксплуатационный режимы нагружения. Основные трудности в воспроизведении нормативных виброполей. Технологическая оснастка. Классификация. Расчетные схемы системы ЭДВ - технологическая оснастка объект испытаний. Критерии выбора параметров оснастки. Методика расчета.	2
05	01	Влияние нелинейностей в ЭДВ на точность воспроизведения заданной спектральной плотности мощности виброускорений. Роль антирезонансов в появлении "провалов" и неустранимых "выбросов". Способы устранения искажений.	2
06	02	Защита человека от вибрации. Нормирование вибрации, действующей на человека. Показатели интенсивности вибрации. Показатели спектрального состава вибрации. Допустимые значения уровней вибрации.	2
07	03	Виброизоляция. Многокаскадная виброизоляция. Нелинейный виброизолятор. Виброизоляция при ударном воздействии. Управляемые системы виброизоляции. Коэффициент эффективности управляемой виброизоляции. Устойчивость движения управляемой виброзащитной системы.	2
08	03	Динамическое гашение колебаний. Пружинный динамический гаситель без трения. Динамический гаситель с трением. Оптимальная настройка гасителя с трением. Маятниковый гаситель крутильных колебаний. Бифилярный подвес маятника. Поглотители колебаний с вязким трением. Поглотители колебаний с сухим трением. Практические приложения теории и примеры осуществленных систем виброзащиты. Ветровой резонанс башенных сооружений. Автоколебания башенных сооружений. Виброзащита вагонов и транспортируемых грузов.	2
09	04	Ansys Modal Damping. Определение собственных частот и форм неконсервативных систем	2
10	04	Реализация метода разложения по собственным формам в Ansys Workbench. MCF (Modal Coordinate File)	2
11	04	Shock Response Spectrum. О реализации спектра удара в Ansys Workbench	2
12	04	Решение задач удара в Ansys Workbench	2
13	04	Random Vibration. Решение задач о случайном возбуждении в Ansys Workbench	2
14	04	Ansys Fatigue. Решение задач усталостной долговечности в Ansys Workbench	2

5.2. Практические занятия, семинары

No	№	Наименование или краткое содержание практического занятия, семинара	Кол-
занятия	раздела	типленование изи криткое содержиние прикти теского запятия, селинара	во

			часов
01	01	Построение расчетной модели системы вибростенд - основание. Расчет параметров виброизоляции	2
02	01	Анализ динамики механических систем при нестационарных режимах работы.	2
03	01	Построение расчетных моделей сложных систем в различных частотных диапазонах. Методы испытаний. Выбор технологической оснастки.	2
04	01	Расчет необходимой мощности ЭДВ под испытуемый объект с заданными динамическими свойствами	2
05	01	Определение динамических характеристик механической системы с одной степенью свободы при ударном нагружении с использованием вибростенда	2
06	01	Определение собственных частот и форм механической системы с использованием ударного молотка	2
07	01	Вибропрочностные испытания при ударном нагружении	2
08	02	Расчет параметров виброзащитной системы при заданном характере возмущающих воздействий.	2
09	02	Построение расчетной модели объекта, выбор системы виброзащиты и определение её параметров. Построение математической модели и исследование устойчивости активной системы виброзащиты.	2
10	02	Определение динамических характеристик механической системы при синусоидальных испытаниях с разверткой по частоте	2
11	02	Определение динамических характеристик механической системы при случайном возбуждении	2
12	02	Определение собственных частот и форм механической системы с использованием модального вибростенда	2
13	03	Построение и исследование расчетной модели вибропогружения сваи.	2
14	03	Идентификация параметров двухмассовой системы с пропорциональным демпфированием.	2
15	03	Исследование динамики механической системы с антивибратором	2
16	03	Исследование собственных частот и форм континуальной системы. Исследование собственных частот системы с двумя степенями свободы	2
17	04	Собственные частоты изгибных колебаний шарнирно опертого стержня с учетом продольной силы	2
18	04	Solution Combination	2
19	04	Метод подконструкций	2
20	04	Modal Damping	2
21	04	MCF (Modal Coordinate File). Решение задачи о вынужденных колебаниях при силовом возбуждении методом суперпозиции собственных форм. Построение AЧХ	2
22	04	MCF (Modal Coordinate File). Решение задачи о вынужденных колебаниях при кинематическом возбуждении методом суперпозиции собственных форм.	2
23	04	Matrix27. Решение задачи о колебаниях трубки с текущей жидкостью с учетом гироскоспических сил.	2
24	04	Расчет собственных частот механических систем с учетом свойств циклической симметрии	2
25	04	Решение задачи динамики движения механической системы, состоящей из абсолютно твердых тел	2
26	04	Решение задачи о вынужденных колебаниях при случайном возбуждении с использование модуля Ansys Workbench Spectrum Response.	2
27	04	Решение задачи о вынужденных колебаниях при случайном возбуждении с использование модуля Ansys Workbench Random Vibration	2

28	04	Решение задачи усталостной долговечности с использованием модуля Ansys Fatique Module	2
----	----	---	---

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
Подготовка к зачету	1	3	53,75	
Подготовка к экзамену	2	4	29,5	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	Семестровое задание "Анализ динамики ротора транспортной турбины"	1	100	Построение одномассовой модели ротора вместе с определением ее упруго-массовых свойств - 20 баллов Определение оптимальных податливостей опор - 20 баллов Определение оптимального демпфирования - 20 баллов. Расчет критических частот в Ansys - 20 баллов Расчет вынужденных колебаний в Ansys 20 баллов	зачет
2	3	Проме- жуточная аттестация	Защита семестрового задания	-	60	1. Отчет. Отчёт должен быть оформлен в соответствии с общими требованиями, предъявляемыми к отчётным материалам согласно ГОСТ 7.32-2017 "Отчет о научно-исследовательской работе". Текст отчёта набирается на компьютере (ПК) и оформляется в печатном виде. Он должен включать в себя титульный лист, листы заданий, оглавление, введение, основную часть, заключение, библиографический список и приложения (не обязательная часть).	

На титульном листе необходимо указывать все атрибуты работы и идентификационные сведения о студенте. После титульного листа представляется подписанное индивидуальное задание. Далее следует аннотация и оглавление с указанием страниц. В отчёт в обязательном порядке включаются материалы согласно индивидуальному заданию, приводится список используемых источников информации. Отчет должен быть хорошо отредактирован и иллюстрирован графиками, диаграммами, схемами, рисунками. В конце отчета могут быть приведены приложения. Они обязательно должны быть пронумерованы, снабжены единообразными подписями и описаны в отчете (с какой целью прилагаются, как используются на практике). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. No 179). При оценке работы студента принимается во внимание содержание, объем и качество оформления отчета. Критерии оценивания отчёта: наличие титульныого листа (5 баллов); наличие реферата (5 баллов); наличие содержания (5 баллов); наличие основной части (5 баллов); наличие заключения (5 баллов); логично и понятное передано содержание работы в тексте пояснительной записки (5 баллов); четкость и логичность полученных выводов и рекомендаций (5 баллов); орфографическая и пунктуационная грамотность в тексте отчёта (5 баллов). Максимальное количество баллов за отчет – 40. Вес мероприятия - 1. 2. Презентация. Оценки за презентацию. 5 баллов презентация содержит титульный слайд, цели, задачи, основную часть, выводы и полностью раскрывает суть выполненной работы, презентация качественно оформлена. 4 балла презентация содержит титульный слайд, цели, задачи, основную часть, выводы, но недостаточно полно раскрывает суть выполненной работы.

3 балла - презентация содержит титульный слайд, задачи, основную часть, нет выводов по работе, презентация плохо оформлена. 2 балла - презентация содержит титульный слайд, основную часть, плохо оформлена, неясна суть выполненной работы. 1 балл - презентация содержит титульный слайд и отрывочные сведения о результатах выполненной работы. 0 баллов - презентация отсуствует. Максимальное количество баллов за презентацию – 5. Вес мероприятия - 2. 3. Доклад. Студент в установленные сроки сдаёт на кафедру отчёт. Отчет должен содержать результаты решения задач №9-№13. Дата и время защиты отчета устанавливаются кафедрой в соответствии с календарным графиком учебного процесса. Оценка за докладвыставляется следующим образом: 5 баллов - доклад по выполненной работе четко выстроен; автор прекрасно ориентируется в демонстрационном материале; показано владение специальным аппаратом; использованы общенаучные и специальные термины, сделаны четкие выводы; обучающийся ответил четко и ясно на вопросы, заданные по результатам доклада. 4 балла - доклад четко выстроен, но есть неточности; автор ориентируется в демонстрационном материале; показано владение специальным аппаратом; использованы общенаучные и специальные термины, сделаны выводы; обучающийся ответил недостаточно четко и ясно на вопросы, заданные по результатам доклада. 3 балла - доклад объясняет суть работы, но не полностью отражает содержание работы; представленный демонстрационный материал не полностью используется докладчиком; показано владение только базовым аппаратом; выводы имеются, но не доказаны; студент слабо отвечает на заданные после защиты вопросы. 2 балла - доклад не объясняет суть работы; презентация содержит отрывочные сведения о результатах работы; не показано владение специальным и базовым аппаратом; выводы не доказаны; нет ответов на

						вопросы. 1 балл - доклад сделан, но демонстрационный материал (презентация) при докладе не использован. 0 баллов — доклад отсутствует Максимальное число баллов за доклад - 5 баллов. Вес мероприятия - 2. 4. Итоговая оценка за курсовую работу. Максимальное число баллов за отчет - 40 баллов. Максимальное число баллов за презентацию - 10 баллов. Максимальное число баллов за доклад - 10 баллов. Итого 60 баллов.	
3	4	Текущий контроль	Семестровое задание. Решение задач динамики	1	50	Семестровое задание состоит из заданий общим объемом 50 баллов. После выполнения задач считается рейтинг как отношение зачтенных задач к общему числу баллов	экзамен
4	4	Проме- жуточная аттестация	экзамен	-	100	Билет включает в себя два вопроса. Правильность ответа на каждый вопрос оценивается по 50-балльной шкале.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	1 5 , 5	В соответствии с пп. 2.5, 2.6 Положения
экзамен	Билет включает в себя два вопроса. Правильность ответа на каждый вопрос оценивается по 50-балльной шкале. Отлично: 86 и более баллов Хорошо: 75-85 баллов Удовлетворительно: 61-65 баллов Неудовлетворительно: менее 51 балла	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	етенции Результаты обучения			№ M	4
IIIK-I	Знает: основные расчетные и экспериментальные методы исследования динамики машин	+	+	+	+
ПК-1	Умеет: получать расчетным путем перемещения, скорости и ускорения изделия при гармонических, случайных и ударных нагрузках	+	+	+	+
ПК-1	Имеет практический опыт: владения конечноэлементным пакетом Ansys Workbench для расчета гармонических, ударных и случайных колебаний механических систем	+	- +	+	+

ПК-2	Знает: современные конечноэлементные методы расчета динамики роторов	+	+	+	+
ПК-2	Умеет: получать экспериментальным путем перемещения, скорости и ускорения изделия при гармонических, случайных и ударных нагрузках	+	+	+	+
ПК-2	Имеет практический опыт: владения современной аппаратурой и программным обеспечением для проведения модальных и вибропрочностных испытаний	+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Бидерман, В. Л. Теория механических колебаний Текст Учебник для вузов по спец."Динамика и прочность машин". М.: Высшая школа, 1980. 408 с. ил.
- 2. Пановко, Я. Г. Основы прикладной теории колебаний и удара. 4-е изд., перераб. и доп. Л.: Политехника, 1990. 272 с. ил.
- 3. Тимошенко, С. П. Колебания в инженерном деле Пер. с англ. Л. Г. Корнейчука; Под ред. Э. И. Григолюка. М.: Машиностроение, 1985. 472 с. Ил.
- 4. Каплун, А. Б. Ansys в руках инженера [Текст] практ. рук. А. Б. Каплун, Е. М. Морозов, М. А. Олферьева; предисл. А. С. Шадского. Изд. стер. М.: URSS: ЛИБРОКОМ, 2014. 269 с. ил.
- 5. Курбатова Е. А. Matlab 7 : Самоучитель / Е. А. Курбатова. М. и др. : Диалектика, 2006. 249 с.
- 6. Поршнев С. В. Компьютерное моделирование физических процессов в пакете MATLAB: учеб. пособие для вузов / С. В. Поршнев. 2-е изд., испр.. СПб. и др.: Лань, 2011. 726 с.: ил.
- 7. Чен К. Matlab в математических исследованиях / К. Чен, П. Джиблин, А. Ирвинг; Пер. с англ. В. Е. Кондрашова, С. Б. Королева. М. : Мир, 2001. 346 с. : ил.

б) дополнительная литература:

- 1. Ильин, М. М. Теория колебаний Учеб. для вузов по направлению подгот. дипломир. специалистов в обл. машиностроения и приборостроения М. И. Ильин, К. С. Колесников, Ю. С. Саратов; Под ред. К. С. Колесникова; Федер. целевая программа "Гос. поддержка интеграции высш. образования и фундам. науки"; Федер. целевая программа "Гос. поддержка интеграции высш. образования и фундам. науки". 2-е изд., стер. М.: Издательство МГТУ им. Н. Э. Баумана, 2003. 271 с. ил.
- 2. Светлицкий, В. А. Задачи и примеры по теории колебаний Ч. 1 Учеб. пособие для втузов. М.: Издательство МГТУ, 1994. 307 с. ил.
- 3. Светлицкий, В. А. Задачи и примеры по теории колебаний Ч. 2 Учеб. пособие для втузов. М.: Издательство МГТУ им. Н. Э. Баумана, 1998. 262,[1] с. ил.
- 4. Пановко, Я. Г. Устойчивость и колебания упругих систем: Соврем. концепции, парадоксы и ошибки. 3-е изд., перераб. М.: Наука, 1979. 384 с. ил.

- 5. Костюк, А. Г. Динамика и прочность турбомашин [Текст] учебник для вузов по направлению "Энергомашиностроение" А. Г. Костюк. 3-е изд., перераб. и доп. М.: Издательский дом МЭИ, 2007. 474 с. ил.
- 6. Яблонский, А. А. Курс теории колебаний [Для машиностроит. спец. вузов]. 3-е изд., испр. и доп. М.: Высшая школа, 1975. 248 с. ил.
- 7. Поршнев, С. В. Компьютерное моделирование физических процессов в пакете MATLAB [Текст] учеб. пособие для вузов С. В. Поршнев. 2-е изд., испр. СПб. и др.: Лань, 2011. 726 с. ил. 1 электрон. опт. диск
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Романов, В. А. Аналитическая динамика и теория колебаний: Учебное пособие / В. А. Романов, П. А. Тараненко; Министерство науки и высшего образования Российской Федерации, Южно-Уральский государственный университет, Кафедра «Техническая механика». Челябинск: Издательский центр ЮУрГУ, 2019. 177 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Романов, В. А. Аналитическая динамика и теория колебаний: Учебное пособие / В. А. Романов, П. А. Тараненко; Министерство науки и высшего образования Российской Федерации, Южно-Уральский государственный университет, Кафедра «Техническая механика». – Челябинск: Издательский центр ЮУрГУ, 2019. – 177 с.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	336 (2)	Компьютер, проектор
Лабораторные занятия	334 (2)	Компьютер, проектор, MathCAD, Ansys, Solidworks
1	334 (2)	Компьютер, проектор, MathCAD, Ansys, Solidworks