ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Кому выдан: Кундикова Н. Д. Подъователь: kundikovaniera: kundikovaniera: kundikovaniera: kondikovaniera: kon

Н. Д. Кундикова

РАБОЧАЯ ПРОГРАММА

дисциплины ФД.01 Введение в нелинейную физику для направления 03.04.01 Прикладные математика и физика уровень Магистратура форма обучения очная кафедра-разработчик Оптоинформатика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 03.04.01 Прикладные математика и физика, утверждённым приказом Минобрнауки от 07.08.2020 № 898

Зав.кафедрой разработчика, к.физ.-мат.н.

Разработчик программы, к.физ.-мат.н., доц., доцент

Эасктронный документ, подписанный ПЭП, хранитея в системе засктронного документооборота ЮУргу Южию-Уранскиго государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Мухин Ю. В. Пользователь: тикhтру Дата подписания: 2 60 5 2025

Ю. В. Мухин

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога ПОУРГУ СТВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОвлователь: shulginovaa Lara подписания: 29 04 2025

А. А. Шульгинов

1. Цели и задачи дисциплины

Целями освоения дисциплины «Введение в нелинейную физику» являются получение базовых знаний по методам современной нелинейной теоретической и математической физики. При освоении дисциплины вырабатывается общефизическая и общематематическая культура: умение логически мыслить, устанавливать логические связи между физическими явлениями, применять полученные знания для понимания и моделирования физических процессов, умение использовать полученные знания для решения задач из других областей физики.

Краткое содержание дисциплины

Методы современной нелинейной теоретической и математической физики, включая следующие темы. Колебания ангармонического осциллятора. Динамика систем с двумя степенями свободы. Нелинейные колебания в системе с конечным числом степеней свободы. Физически важные нелинейные эволюционные уравнения. Точные методы интегрирования нелинейных эволюционных уравнений.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ОПК-1 Способен применять фундаментальные и прикладные знания в области физико-математических и (или) естественных наук для решения профессиональных задач, в том числе в сфере педагогической деятельности	Знает: основные достижения нелинейной физики; основные точно решаемые теоретические модели нелинейных физических явлений, точные и приближенные методы решения нелинейных уравнений математической физики, теории нелинейных колебаний и волн в

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,	
видов работ учебного плана	видов работ	
1.О.06 Взаимодействие излучения с веществом, ФД.02 Динамическая голография	Не предусмотрены	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: основные понятия динамической
ФД.02 Динамическая голография	голографии, виды голограмм, виды
	взаимодействия на них световых пучков,

	оптические системы на основе динамических
	голограмм; математические модели,
	описывающие возникновение динамических
	решеток в некоторых средах Умеет: Имеет
	практический опыт: расчета оптических
	характеристик динамических голограмм и
	некоторых процессов взаимодействия на них
	световых волн;
	Знает: процессы взаимодействия с веществом
	быстрых заряженных частиц, рентгеновского и
	гамма излучения, основы теории кинетического
	уравнения Больцмана; , методы решения
	уравнения переноса, основанные на
	преобразованиях Фурье, Лежандра, Лапласа;
	фундаментальные основы, подходы и методы
	математики, теоретической физики для описания
	процессов взаимодействия частиц с веществом.
	Умеет: формулировать основные уравнения
1.О.06 Взаимодействие излучения с веществом	теории столкновений и теории переноса; ,
	находить приемлемые для конкретной задачи
	переноса излучения преобразования; применять
	знания фундаментальных основ, подходов и
	методов математики, теоретической физики для
	описания процессов взаимодействия частиц с
	веществом. Имеет практический опыт:
	выполнения преобразований Фурье, Лежандра,
N a	Лапласа; использования современных подходов и
	методов теоретической физики к описанию и
	анализу процессов взаимодействия частиц с
	веществом

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 20,25 ч. контактной работы

Вид учебной работы		Распределение по семестрам в часах Номер семестра 3		
Общая трудоёмкость дисциплины	72	72		
Аудиторные занятия:	16	16		
Лекции (Л)	0	0		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16		
Лабораторные работы (ЛР)	0	0		
Самостоятельная работа (СРС)	51,75	51,75		
Подготовка к зачёту	16	16		
Подготовка докладов	35,75	35.75		
Консультации и промежуточная аттестация	4,25	4,25		
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет		

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	-	Всего	Л	П3	ЛР
1	Колебания ангармонического осциллятора	2	0	2	0
2	Динамика систем с двумя степенями свободы	2	0	2	0
3	Нелинейные колебания в системе с конечным числом степеней свободы	4	0	4	0
1 4	Физически важные нелинейные эволюционные уравнения	4	0	4	0
5	Точные методы интегрирования нелинейных эволюционных уравнений	4	0	4	0

5.1. Лекции

Не предусмотрены

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Колебания ангармонического осциллятора. Метод фазовой плоскости. Особые точки. Осциллятор Дюффинга и методы его приближенные решения. Элементы эллиптических функций Якоби. Предельный цикл. Уравнение Ван-дер-Поля.	2
2	2	Динамика систем с двумя степенями свободы. Колебания двух связанных ангармонических осцилляторов. Бифуркации решений. Дискретная модель с самолокализацией. Интегрируемые нелинейные уравнения движения систем с двумя степенями свободы. Качественный анализ, допускающий обощение на любое число степеней свободы.	2
3	3	Нелинейные колебания в системе с конечным числом степеней свободы. Локализация возбуждений в системе трех связанных осцилляторов. Динамика четырех связанных осцилляторов Дюффинга. Цепочка связанных ангармонических осцилляторов.	4
4	4	Физически важные нелинейные эволюционные уравнения. Эвристический метод получения нелинейных волновых уравнений. Нелинейные волны в среде без дисперсии и диссипации. Волны в среде с диссипацией и дисперсией. Распространение волновых пакетов, нелинейное уравнение Шредингера. Модулированные волны в нелинейных средах. Нелинейные уравнения в неустойчивых средах.	4
5	5	Точные методы интегрирования нелинейных эволюционных уравнений. Законы сохранения уравнения Кортевега-де-Вриза (КДВ) и преобразования Миуры. Метод обратной задачи рассеяния для уравнения КДВ. Многосолитонные решения. Обратная задача рассеяния в формулировке Лакса.	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

В	Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Подготовка к зачёту	Учебно-методические материалы в электронном виде [1-3]	3	16			
Подготовка докладов	Методические пособия для самостоятельной работы студента [1]; Научные журналы: Russian Journal of Nonlinear Dynamics; International Journal of Non-Linear Mechanics; Chaos, Solitons & Fractals; Physica D (Nonlinear Phenomena); Physics Letters A; Chaos; International Journal of Bifurcation and Chaos (IJBC) in Applied Sciences and Engineering; Physical Review E	3	35,75			

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	Доклад	1		Оценивается доклад на 3 балла: 0 - доклад не подготовлен. 1 - в докладе отсутствует основное содержание. 2 - доклад не содержит некоторые существенные пункты. Материалы, использованные в докладе, взяты из российских и иностранных источников не старше 5 лет. 3 - доклад сделан на высоком уровне, студент свободно отвечает на вопросы.	зачет
2	В каждом билете три вопроса. Каждый вопрос оценивается в 3 балла. Проме- 3 жуточная аттестация Зачёт - 9 1 - ответ содержит существенные недостатки, 2 - ответ содержит ошибки, 3 - ответ дан без ошибок или ошибки несущественные.		зачет				

6.2. Процедура проведения, критерии оценивания

Вид	Процедура проведения	Критерии
-----	----------------------	----------

промежуточной аттестации		оценивания
зачет	οπρομοσπιστιο πο οπιλι ροπροσολί Προγονιπομμο	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ CM
		1	2
OHK-I	Знает: основные достижения нелинейной физики; основные точно решаемые теоретические модели нелинейных физических явлений, точные и приближенные методы решения нелинейных уравнений математической физики, теории нелинейных колебаний и волн в различных физических системах.	+	+
ОПК-1	Умеет: использовать математический аппарат теории нелинейных физических явлений для решения профессиональных задач.	+	+
IOHK-I	Имеет практический опыт: решения нелинейных уравнений математической физики	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания для студентов

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания для студентов

Электронная учебно-методическая документация

$\mathcal{N}_{\underline{0}}$	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
- 11		ЭБС издательства Лань	Алдошин, Г. Т. Теория линейных и нелинейных колебаний: учебное пособие / Г. Т. Алдошин. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 320 с. — ISBN 978-5-8114-1460-4. — Текст: электронный // Лань: электронно-библиотечная система.

			— URL: https://e.lanbook.com/book/211076
2	Основная литература	ЭБС издательства Лань	Гурбатов, С. Н. Волны и структуры в нелинейных средах без дисперсии: монография / С. Н. Гурбатов, О. В. Руденко, А. И. Саичев. — Москва: ФИЗМАТЛИТ, 2008. — 496 с. — ISBN 978-5-9221-1042-6. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/59525
3	Основная литература	ЭБС издательства Лань	Скубов, Д. Ю. Основы теории нелинейных колебаний: учебное пособие / Д. Ю. Скубов. — Санкт-Петербург: Лань, 2022. — 320 с. — ISBN 978-5-8114-1470-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/211349

Перечень используемого программного обеспечения:

1. Microsoft-Windows(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары	504 (1б)	Мультимедийное оборудование