ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

В. И. Киселев

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.С0.14 Проектирование систем теплозащиты и терморегуляции летательных аппаратов

для специальности 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов

уровень Специалитет

специализация Ракетные транспортные системы

форма обучения очная

кафедра-разработчик Прикладная математика и ракетодинамика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов, утверждённым приказом Минобрнауки от 12.08.2020 № 964

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, д.техн.н., доц., профессор

В. И. Киселев

Электронный документ, подписанный ПЭП, хранитев в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Костин Г. Ф. Педалователь: Kostingf Lara подписания: 13 06 2024

Г. Ф. Костин

1. Цели и задачи дисциплины

Целью изучения дисциплины «Проектирование систем теплозащиты и терморегулирования ЛА» является освоение студентом системы знаний и практических навыков, необходимых для дальнейшего выполнения научно-исследовательской, проектной, экспериментальной и производственнотехнологической видов профессиональной деятельности. Состоит в ознакомлении студентов с необходимостью и современными проблемами защиты от внешнего теплового воздействия конструкций современных летательных аппаратов(ЛА); математическими моделями, алгоритмами расчетов температурных полей и потребной толщины материалов теплозащитных покрытий (ТЗП) пассивного и активного типов для теплонапряженных элементов конструкции; физикохимическими процессами и механизмами разрушения материалов ТЗП конструктивных узлов ЛА; испытаниями, диагностикой и эксплуатационными требованиями к тепловой защите теплонапряженных узлов ЛА.

Краткое содержание дисциплины

Учебная дисциплина «Проектирование систем теплозащиты и терморегулирования ЛА» в общей модели подготовки специалиста, в соответствии с Государственными требованиями к минимуму содержания и уровню подготовки выпускника, заключается в том, что овладение в едином комплексе с другими учебными курсами создает основу для формирования у него теоретических знаний и практических навыков в области разработки, изготовления, испытаний и диагностики тепловой защиты элементов конструкции ЛА различных типов и назначения. Проблема тепловой защиты космического летательного аппарата от высоких удельных тепловых потоков и высоких температур набегающего газового потока при входе аппарата с гиперзвуковой скоростью в атмосферы планет (и в частности Земли) разрабатывается в течение 30—40 лет. За это время проведено широкое исследование различных видов теплозащитных материалов и теплозащитных покрытий, обеспечивающих надежную тепловую защиту летательного аппарата. Разработана теория и исследованы основные закономерности термодинамики и теплообмена процессов воздействия высокоэнергетических высокотемпературных газовых потоков на различные конструкционные материалы. Курс дисциплины обобщает достижения отечественной и зарубежной науки в области аэродинамики, тепло- и массообмена и термодинамики применительно к проектированию и расчету тепловой защиты, рассматриваются механизм разрушения основных классов теплозащитных покрытий, методы экспериментальных исследований эффективности тепловой защиты в высокотемпературных газовых потоках. Учитывая, что в последнее время наблюдается сближение требований к тепловой защите в энергетических установках и аппаратах космической техники, необходимость знания дисциплины велико. Основное внимание уделяется методам и материалам, температурный диапазон применимости которых превышает 1000 К. Внимание уделяется нахождению оптимального режима тепловой защиты, анализу тепловых, массообменных и химических процессов в теплозащитных покрытиях.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-1 Способен конструировать РКТ, ее составные части, системы и агрегаты	Знает: Актуальные задачи создания средств тепловой защиты ЛА; Назначение, области применения и методы тепловой защиты ЛА, ее классификацию по физическому принципу поглощения (отвода) теплоты ЛА. Умеет: Создавать физические и математические модели, позволяющие анализировать тепловые процессы ЛА; Использовать математический аппарат для определения тепловых нагрузок, уровней тепловых потоков конвективного и радиационного теплообмена в условиях применения «активной» и «пассивной» систем тепловой защиты; Описывать определяющий механизм разрушения материалов ТЗП в условиях интенсивного нагрева. Имеет практический опыт: Расчета температурных полей; Выбора материала; Выбора эффективных способов тепловой защиты и терморегуляции элементов ЛА.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ	
Проектирование ракетно-технических		
комплексов,	Не предусмотрены	
Динамика полета ракет		

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Проектирование ракетно-технических комплексов	Знает: Состав и структуру компоновочных схем; Технологию проектирования, состав и функционал РКТ; Состояние и перспективы развития РКТ. Умеет: Обосновывать и делать выбор устройств в изделиях РКТ. Имеет практический опыт: Выбора устройств и создания базы современных конструкций и технологий.
Динамика полета ракет	Знает: Уравнения движения объекта вокруг центра масс. Умеет: Составлять уравнение движения объекта вокруг центра масс для различных вариантов изделий. Имеет практический опыт: Составления математических моделей углового движения, их решения и интерпретации.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 56,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра		
		10		
Общая трудоёмкость дисциплины	108	108		
Аудиторные занятия:	48	48		
Лекции (Л)	32	32		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16		
Лабораторные работы (ЛР)	0	0		
Самостоятельная работа (СРС)	51,5	51,5		
Подготовка конспектов	15	15		
Подготовка к экзамену	20	20		
Подготовка реферата	16,5	16.5		
Консультации и промежуточная аттестация	8,5	8,5		
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен		

5. Содержание дисциплины

№	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
раздела	тапменование разделов дисциплины	Всего	Л	ПЗ	ЛР	
1	Тепловая защита летательных аппаратов, её необходимость и назначение.	6	4	2	0	
2	Термогазодинамика гиперзвуковых течений	6	4	2	0	
3	Особенности термодинамики высокотемпературного газа	6	4	2	0	
4	Тепло- и массообмен на непроницаемой поверхности при обтекании тела гиперзвуковым потоком.	6	4	2	0	
5	Особенности тепло- и массообмена в системах тепловой защиты с проницаемой поверхностью	6	4	2	0	
	Особенности лучистого теплообмена при полете космических аппаратов в плотных слоях атмосферы с гиперзвуковыми скоростями	6	4	2	0	
/	Методы и средства тепловой защиты космических летательных аппаратов	6	4	2	0	
8	Теплозащитные покрытия	3	2	1	0	
1 9	Разрушение теплозащитных материалов при аэродинамическом нагреве	3	2	1	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1-2	1	Классификация летательных аппаратов ракетно-космической техники. классификация систем тепловой защиты летательных аппаратов. Проблемы проектирования тепловой защиты космических летательных аппаратов. расчёт основных траекторных параметров космических	4

		летательных аппаратов.	
3-4	2	Понятие гиперзвукового течения.газовая динамика обтекания сферического тела гиперзвуковым потоком.термодинамика гиперзвукового течения.	4
5-6	3	Термодинамическое и химическое состояние газа в пограничном слое	4
7-8	4	Механизм переноса теплоты в химически активном пограничном слое. Математическая модель многокомпонентного химически активного пограничного слоя. условия подобия безразмерных профилей скорости, энтальпии и массовой концентрации компонентов в пограничном слое. Закон конвективного теплообмена ньютона для химически активного пограничного слоя.	4
9-10	5	Некоторые характеристики газовых смесей. Механизм блокировки конвективного теплового потока при вдуве газа в пограничный слой.физическая сущность тепло- и массообмена при вдуве газа в пограничный слой.	4
11-12	6	Особенности лучистого теплообмена на непроницаемой стенке. Особенности лучистого теплообмена на проницаемой поверхности.	4
13-14	7	Теплоаккумулирующая и радиационная система тепловой защиты. Тепловая защита с жидкими теплоносителями. Гидрогазодинамические системы тепловой защиты. Тепловая защита пористым охлаждением.	4
15	8	Факторы, воздействующие на тепловую защиту космических аппаратов особенности тепловой защиты космических аппаратов разных классов. Классификация материалов теплозащитных покрытий. Эффективность теплозащитных покрытий.	2
16	9	Разрушение теплозащитных материалов при аэродинамическом нагреве. Механизм разрушения химически разлагающихся теплозащитных материалов.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара				
1		Классификация летательных аппаратов ракетно-космической техники.классификация систем тепловой защиты летательных аппаратов. Проблемы проектирования тепловой защиты космических летательных аппаратов.расчёт основных траекторных параметров космических летательных аппаратов.	2			
2		Классификация летательных аппаратов ракетно-космической техники.классификация систем тепловой защиты летательных аппаратов. Проблемы проектирования тепловой защиты космических летательных аппаратов.расчёт основных траекторных параметров космических летательных аппаратов.	2			
3	3	Термодинамическое и химическое состояние газа в пограничном слое	2			
4	4	Механизм переноса теплоты в химически активном пограничном слое. Математическая модель многокомпонентного химически активного пограничного слоя. Условия подобия безразмерных профилей скорости, энтальпии и массовой концентрации компонентов в пограничном слое. Закон конвективного теплообмена ньютона для химически активного пограничного слоя. Аналогия между процессами тепло- и массообмена в химически активном пограничном слое. Расчет теплообмена при обтекании тела гиперзвуковым потоком. Теоретические основы расчета теплообмена на каталитически активной поверхности. Расчет теплообмена на каталитически активной поверхности.				
5	5	Некоторые характеристики газовых смесей. Механизм блокировки	2			

		конвективного теплового потока при вдуве газа в пограничный слой.физическая сущность тепло- и массообмена при вдуве газа в пограничный слой.аналогия между процессами тепло- и массообмена в пограничном слое.расчет тепло- и массообмена и трения при вдуве газа в пограничный слой.расчет теплообмена при вдуве газа-охладителя через перфорированную поверхность.	
6	6	Особенности лучистого теплообмена на непроницаемой стенке. Особенности лучистого теплообмена на проницаемой поверхности.	2
7	7	Теплоаккумулирующая и радиационная система тепловой защиты. Тепловая защита с жидкими теплоносителями. гидрогазодинамические системы тепловой защиты. Тепловая защита пористым охлаждением	2
8	8	Факторы, воздействующие на тепловую защиту космических аппаратов. особенности тепловой защиты космических аппаратов разных классов. классификация материалов теплозащитных покрытий. эффективность теплозащитных покрытий.	1
8	9	Разрушение теплозащитных материалов при аэродинамическом нагреве. Механизм разрушения химически разлагающихся теплозащитных материалов. механизм и математическая модель разрушения полимерных материалов в потоке высокотемпературного воздуха. Механизм и математическая модель разрушения стеклопластических материалов в потоке высокотемпературного воздуха.	1

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС							
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов				
Подготовка конспектов	метод. пос. 5.	10	15				
Подготовка к экзамену	ПУМД осн. лит. 1; доп. лит. 1-2; ЭУМД осн. лит. 2, 3, 5-8; доп. лит. 1, 4, 9; метод. пос. 1-5.	10	20				
Подготовка реферата	ПУМД осн. лит. 1; доп. лит. 1-2; ЭУМД осн. лит. 2, 3, 5-8; доп. лит. 1, 4, 9; метод. пос. 1-5.	10	16,5				

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
---------	--------------	-----------------	---	-----	---------------	---------------------------	-------------------------------

1	10	Текущий контроль	Подготовка конспекта по теме "Особенности термодинамики высокотемпературного газа"	1	3	Подготовка конспекта по теме осуществляется во время изучения раздела и предоставляется на последнем занятии изучаемого раздела. Полный конспект по теме соответствует 3 баллам. Частично полный конспект соответствует 2 баллам. Отсутствие конспекта соответствует 0 баллов. Максимальное количество баллов – 3.	экзамен
2	10	Текущий контроль	Подготовка конспекта по теме "Особенности тепло- и массообмена в системах тепловой защиты с проницаемой поверхностью"	1	3	Подготовка конспекта по теме осуществляется во время изучения раздела и предоставляется на последнем занятии изучаемого раздела. Полный конспект по теме соответствует 3 баллам. Частично полный конспект соответствует 2 баллам. Отсутствие конспекта соответствует 0 баллов. Максимальное количество баллов – 3.	экзамен
3	10	Текущий контроль	Реферат	1	10	Реферат выполняется студентом в течении изучения данной дисциплины и предоставляется на семинарском занятии. Тему доклада студент выбирает самостоятельно. Реферат оценивается в 10 баллов. Общий балл складывается из следующих показателей: Творческий характер работы — 4 балла; Логичность и обоснованность выводов - 4 балла; Умение ответить на вопросы - 2 балл. Максимальное количество баллов — 10.	экзамен
4	10	Текущий контроль	Выступление с докладом на семинарском занятии	1	5	Доклад выполняется студентом в течении изучения данного раздела дисциплины и предоставляется на семинарском занятии. Тему доклада студент выбирает самостоятельно, исходя из темы раздела. Доклад оценивается в 5	экзамен
5	10	Проме- жуточная аттестация	Экзамен	-	20	На экзамене происходит оценивание учебной деятельности обучающихся. Рейтинг обучающегося по дисциплине определяется только по	экзамен

	результатам текущего контроля. При условии выполнения всех мероприятий текущего контроля и достижении 60-100% рейтинга
	обучающийся получает соответствующую рейтинговую оценку. При желании повысить рейтинг за курс обучающийся на очном экзамене опрашивается по билету, сформированному из вопросов, выносимых на экзамен.
	Бопросов, выносимых на экзамен. Билет содержит два вопроса. Правильный ответ на вопрос соответствует 10 баллам. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов – 20.

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	реитинга. Экзамен проводится в соответствии с расписанием экзаменационной сессии. На экзамен отволится 30 минут	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения) 1	<u>√</u> 2	К 3	M 4 5
	Знает: Актуальные задачи создания средств тепловой защиты ЛА; Назначение, области применения и методы тепловой защиты ЛА, ее классификацию по физическому принципу поглощения (отвода) теплоты ЛА.	+	+	+-	++
ПК-1	Умеет: Создавать физические и математические модели, позволяющие анализировать тепловые процессы ЛА; Использовать математический аппарат для определения тепловых нагрузок, уровней тепловых потоков конвективного и радиационного теплообмена в условиях применения «активной» и «пассивной» систем тепловой защиты; Описывать определяющий механизм разрушения материалов ТЗП в условиях интенсивного нагрева.	+	+	+-	++-
ПК-1	Имеет практический опыт: Расчета температурных полей; Выбора материала; Выбора эффективных способов тепловой защиты и терморегуляции элементов ЛА.			-	++

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Кудинов, В. А. Техническая термодинамика и теплопередача [Текст] : учебник для академического бакалавриата/ В. А. Кудинов, Э. М. Карташов, Е. В. Стефанюк. 3-е изд., испр. и доп. М. : Юрайт, 2015
- б) дополнительная литература:
 - 1. Нащокин В.В. Техническая термодинамика и теплопередача.-М.: Высшая школа.-2012 г.
 - 2. Кудринов В.А. Техническая термодинамика: учебное пособие для вузов/ В.А. Кудинов, Э.М. Карташов 5-е изд., стер. М.: Высшая школа, 2007 261 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Бабкин, М. Ю. Теория горения и взрыва [Электронный ресурс] : метод. рекомендации к курсовой работе / М. Ю. Бабкин, С. И. Боровик ; Юж.-Урал. гос. ун-т, Каф. Безопасность жизнедеятельности ; ЮУрГУ. Челябинск , 2014. Электрон. текстовые дан. Режим доступа : http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000528243
 - 2. Елисеев, В. Н. Теплообмен и тепловые испытания материалов и конструкций аэрокосми ческой техники при радиационном нагреве [Текст]: монография / В. Н. Елисеев. М.: Изд-во МГТУ им. Н. Э. Баумана, 2014
 - 3. Павлюк Ю.С. Баллиситческое проектирование ракет. Учебное пособие. Челябинск: ЮУрГУ, 1996.-114 с., ил.
 - 4. Бакланова, В.Г. Теплообменные аппараты низкотемпературных установок и систем термостатирования. Часть 1. «Аппараты трубчатого и пластинчато- ребристого типов» [Электронный ресурс] : учебное пособие / В.Г. Бакланова, Ю.А. Шевич. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2011. 68 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=52215
 - 5. Сборщиков, Г. С. Теплофизика и теплотехника. Теплофизика [Электронный ресурс] : практикум / Г. С. Сборщиков, С. И. Чибизова. М. : МИСИС, 2012. 104 с.
- из них: учебно-методическое обеспечение самостоятельной работы студента:
 - 1. Бабкин, М. Ю. Теория горения и взрыва [Электронный ресурс] : метод. рекомендации к курсовой работе / М. Ю. Бабкин, С. И. Боровик ; Юж.-Урал. гос. ун-т, Каф. Безопасность жизнедеятельности ; ЮУрГУ. Челябинск , 2014. Электрон. текстовые дан. Режим доступа : http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000528243
 - 2. Елисеев, В. Н. Теплообмен и тепловые испытания материалов и конструкций аэрокосми ческой техники при радиационном нагреве [Текст]: монография / В. Н. Елисеев. М.: Изд-во МГТУ им. Н. Э. Баумана, 2014

- 3. Павлюк Ю.С. Баллиситческое проектирование ракет. Учебное пособие. Челябинск: ЮУрГУ, 1996.-114 с., ил.
- 4. Бакланова, В.Г. Теплообменные аппараты низкотемпературных установок и систем термостатирования. Часть 1. «Аппараты трубчатого и пластинчато- ребристого типов» [Электронный ресурс] : учебное пособие / В.Г. Бакланова, Ю.А. Шевич. Электрон. дан. М. : МГТУ им. Н.Э. Баумана (Московский государственный технический университет имени Н.Э. Баумана), 2011. 68 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=52215
- 5. Сборщиков, Г. С. Теплофизика и теплотехника. Теплофизика [Электронный ресурс] : практикум / Г. С. Сборщиков, С. И. Чибизова. М. : МИСИС, 2012. 104 с.

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	дополнительная литература	Электронно- библиотечная система издательства Лань	Дмитриевский, А.А. Внешняя баллистика: Учебник для студентов вузов [Электронный ресурс]: учебник / А.А. Дмитриевский, Л.Н. Лысенко. — Электрон. дан. — М.: Машиностроение, 2005. — 608 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=767
2	Основная литература	Электронно- библиотечная система издательства Лань	Банных, О.П. Основные конструкции и тепловой расчет теплообменников [Электронный ресурс]: учебное пособие. — Электрон. дан. — Спб.: НИУ ИТМО (Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики), 2012. — 44 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=40719
3	Основная литература	Электронно- библиотечная система издательства Лань	Конвективный теплообмен летательных аппаратов [Электронный ресурс]:. — Электрон. дан. — М.: Физматлит, 2014. — 378 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=59672
4	дополнительная литература	Электронно- библиотечная система издательства Лань	Волков, К.Н. Течения и теплообмен в каналах и вращающихся полостях [Электронный ресурс] : / К.Н. Волков, В.Н. Емельянов. — Электрон. дан. — М. : Физматлит, 2010. — 462 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=49099
5	Основная литература	Электронно- библиотечная система издательства Лань	Александров, Н.Е. Основы теории тепловых процессов и машин: в 2 ч. Часть 2 [Электронный ресурс]: / Н.Е. Александров, А.И. Богданов, К.И. Костин. — Электрон. дан. — М.: Лаборатория знаний, 2012. — 573 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=66296
6	Основная литература	Электронно- библиотечная система издательства Лань	Александров, Н.Е. Основы теории тепловых процессов и машин: в 2 ч. Часть 1 [Электронный ресурс]: / Н.Е. Александров, А.И. Богданов, К.И. Костин. — Электрон. дан. — М.: Лаборатория знаний, 2012. — 568 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=6629
7	Основная литература	Электронно- библиотечная	Кудинов, И.В. Математическое моделирование гидродинамики и теплообмена в движущихся жидкостях [Электронный

		система издательства Лань	ресурс]: / И.В. Кудинов, В.А. Кудинов, А.В. Еремин [и др.]. — Электрон. дан. — СПб.: Лань, 2015. — 208 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=56168
8	Основная питература	библиотечная система издательства Лань	Матвеев, Н.К. Экранно-вакуумная теплоизоляция и определение её характеристик: учебное пособие для вузов [Электронный ресурс]: учебное пособие. — Электрон. дан. — СПб.: БГТУ "Военмех" им. Д.Ф. Устинова (Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова), 2012. — 42 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=64108
9	Дополнительная питература	библиотечная система издательства	Сорокин, В.А. Ракетно-прямоточные двигатели на твёрдых и пастообразных топливах [Электронный ресурс]: / В.А. Сорокин, Л.С. Яновский, В.А. Козлов [и др.]. — Электрон. дан. — М.: Физматлит, 2010. — 318 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=49100

Перечень используемого программного обеспечения:

1. Microsoft-Office(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Пекшии	223 (5)	Доска, мел, парты
Практические 3 занятия и семинары (5		Доска, мел, парты