ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога ПОЗДО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Вороннов А. П. Полователь, чеготибьочая Гата подписания: 09.05.2025

А. Г. Воронцов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П0.13.01 Квантовая и оптическая электроника для направления 11.03.04 Электроника и наноэлектроника уровень Бакалавриат профиль подготовки Наноэлектроника: проектирование, технология, применение форма обучения очная кафедра-разработчик Физика наноразмерных систем

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.03.04 Электроника и наноэлектроника, утверждённым приказом Минобрнауки от 19.09.2017 № 927

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, д.физ.-мат.н., профессор

Эаектронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Веронцов А. Г. Пользователь: vorontsiovag Lara nounreaume. 30 s. 20.25

А. Г. Воронцов

Электронный документ, подписанный ПЭП, хранится в системе электронного документообората (Охио-Уранадасит оказументообората (Охио-Уранадасит оказументообората (Охио-Уранадасит оказументом оказументом оказументом (Охио-Уранадасит оказументом оказументом оказументом документом документом

Ю. В. Микляев

1. Цели и задачи дисциплины

Целью преподавания дисциплины является обеспечение подготовки студентов в области физических основ квантовой электроники и развивающихся на этой основе технологий и устройств работающих в оптическом диапазоне. Основной задачей дисциплины является изучение принципов действия, характеристик, параметров и технологических особенностей важнейших узлов и элементов, используемых в оптических системах. К их числу относятся квантовые генераторы и усилители, оптические модуляторы и дефлекторы, фотодиоды и фотоприемные устройства, приборы, основанные на использовании нелинейной и интегральной оптики, голографии, оптико-электронные системы управления пространственным и временным спектром излучения квантовых приборов. В результате изучения настоящей дисциплины студенты приобретут фундаментальные знания для изучения последующих специальных дисциплин, а также получат практические навыки, необходимые для работы специалистов в области технологий и оборудования для электронного машиностроения

Краткое содержание дисциплины

Способы описания и характеристики электромагнитного излучения оптического диапазона. Физические основы взаимодействия оптического излучения с квантовыми системами; энергетические состояния квантовых систем; оптические переходы, структура спектров; ширина, форма и уширение спектральных линий. Усиление оптического излучения; активные среды и методы создания инверсной населённости; насыщение усиления в активных средах; генерация оптического излучения. Оптические явления в средах с различными агрегатными состояниями. Нелинейно-оптические эффекты. Основные типы когерентных и некогерентных источников оптического излучения. Физические принципы и основные элементы для регистрации, модуляции, отклонения, трансформации, передачи и обработки оптического излучения.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: физические основы квантовой
ПК-3 Способен аргументировано выбирать и	электроники и развивающихся на их основе
реализовывать на практике эффективную	технологий и устройств работающих в
методику экспериментального исследования	оптическом диапазоне; принципы действия,
параметров и характеристик приборов, схем,	характеристики, параметры и технологические
устройств и установок электроники и	особенности важнейших узлов и элементов,
наноэлектроники различного функционального	используемых в оптических системах
назначения	Умеет: проводить расчет параметров устройств,
	работающих в оптическом диапазоне

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Основы технологий электронного	Не предусмотрены

приборостроения	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Основы технологий электронного приборостроения	Знает: перспективные технологии электронного приборостроения Умеет: квалифицированно решать разнообразные технологические задачи, возникающие при производстве и эксплуатации аппаратуры, включая обеспечение долговечности и надежности устройств Имеет практический опыт:

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч., 126,75 ч. контактной работы

	Всего	Распределение по семестрам в часах			
Вид учебной работы	часов	Номер семестра			
		7	8		
Общая трудоёмкость дисциплины	216	108	108		
Аудиторные занятия:	112	64	48		
Лекции (Л)	56	32	24		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	56	32	24		
Лабораторные работы (ЛР)	0	0	0		
Самостоятельная работа (СРС)	89,25	37,75	51,5		
Подготовка к контрольным работам	30	20	10		
Подготовка к зачету	17,75	17.75	0		
Подготовка к экзамену	41,5	0	41.5		
Консультации и промежуточная аттестация	14,75	6,25	8,5		
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет	экзамен		

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
			Л	ПЗ	ЛР	
1	Способы описания и характеристики электромагнитного излучения оптического диапазона.	6	4	2	0	
2	Физические основы взаимодействия оптического излучения с квантовыми системами; энергетические состояния квантовых систем; оптические переходы, структура спектров; ширина, форма и уширение спектральных линий.	28	10	18	0	
3	Усиление оптического излучения; активные среды и методы	22	10	12	0	

	создания инверсной населённости; насыщение усиления в активных средах; генерация оптического излучения.				
4	Оптические явления в средах с различными агрегатными состояниями.	16	10	6	0
5	Нелинейно-оптические эффекты.	14	8	6	0
6	Основные типы когерентных и некогерентных источников оптического излучения.	14	8	6	0
7	Физические принципы и основные элементы для регистрации, модуляции, отклонения, трансформации, передачи и обработки оптического излучения.	12	6	6	0

5.1. Лекции

№	No	Наиманоранна или краткоа соларжанна дакинонного запятия	Кол-
лекции	раздела	Наименование или краткое содержание лекционного занятия	часов
1	1	Представление оптического излучения в виде световых лучей, электромагнитных волн. Корпускулярно-волновой дуализм.	4
2	2	Энергетические состояния атомов и молекул.	2
3	2	Квантовые переходы. Спонтанное и вынужденное излучение. Коэффициенты Эйнштейна.	2
4	2	Дипольное приближение.	2
5	2	Уширение спектральных линий.	2
6	2	Рассеяние света. Оптические характеристики вещества.	2
7	3	Принцип работы квантовых усилителей и генераторов.	2
8	3	Возбуждение активного вещества (накачка).	2
9	3	Оптические резонаторы.	2
10	3	Условие самовозбуждения и насыщение усиления. Нестационарная генерация, модуляция добротности и синхронизация мод.	2
11	3	Свойства лазерного излучения.	2
10	4	Распространение гауссовых пучков. Оптические свойства атмосферы.	2
11	4	Отражение, преломление и рефракция света. Оптические волноводы.	4
12	4	Распространение света в анизотропных средах и элементы кристаллооптики. Преобразование лазерных пучков.	4
13	5	Механизмы оптической нелинейности. Генерация оптических гармоник.	4
14		Параметрическая генерация света. Вынужденное рассеяние света. Самовоздействие света.	4
15	6	Мазеры. Газовые лазеры: атомарные, ионные, молекулярные, эксимерные и химические, рентгеновские лазеры и лазеры на свободных электронах.	4
16		Твердотельные и жидкостные лазеры: рубиновый, на кристаллах и стеклах с неодимом, перестраиваемые, волоконные, жидкостные. Полупроводниковые лазеры и светодиоды.	4
17	7	Детекторы оптического излучения. методы апмлитудно-фазовой модуляции оптического излучения.	4
18	7	Оптическая обработка изображений. интерфереометрия. микроскопия	2

5.2. Практические занятия, семинары

No॒	№		Кол-
занятия		Наименование или краткое содержание практического занятия, семинара	во
Sammin	раздела		часов

1	1	Основы волновой и квантовой оптики	2	
2	2	Расчёт вероятностей переходов.	6	
3	2	Задачи по оценке ширины спектральных линий.	6	
4	2	Волоконная оптика. Решения задач.	6	
5	3	Расчёт оптических резонаторов.	6	
6	3	Расчёт параметров гауссовых пучков в оптических системах.		
7	4	Изменение поляризации света при распространении через оптически анизотропную среду	6	
8	5	Расчет КПД преобразования излучения во вторую гармонику	6	
9	6	длина когерентности оптического излучения	6	
10	7	интерференция оптического излучение. дифракция оптического излучения. амплитудная модуляция оптического излучения	6	

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Подготовка к контрольным работам	Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. — 3-е изд.,стер. — Москва: ФИЗМАТЛИТ, [б. г.]. — Том 4: Оптика — 2002. — 792 с.: стр. 15-345.	7	20		
Подготовка к зачету	Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. — 3-е изд.,стер. — Москва: ФИЗМАТЛИТ, [б. г.]. — Том 4: Оптика — 2002. — 792 с.: стр. 15-345.	7	17,75		
Подготовка к контрольным работам	Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. — 3-е изд.,стер. — Москва: ФИЗМАТЛИТ, [б. г.]. — Том 4: Оптика — 2002. — 792 с.: стр. 350-780.	8	10		
Подготовка к экзамену	Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. — 3-е изд.,стер. — Москва: ФИЗМАТЛИТ, [б. г.]. — Том 4: Оптика — 2002. — 792 с. — ISBN 5-9221-0228-1. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/2314. — Режим доступа: для авториз. пользователей.	8	41,5		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	7	Текущий контроль	Контрольная работа.	1	5	Контрольная работа содержит 5 теоретических вопросов. За верный ответ на каждый из них начисляется 1 балл.	зачет
2	7	Текущий контроль	Контрольная работа.	1	5	Контрольная работа содержит 5 теоретических вопросов. За верный ответ на каждый из них начисляется 1 балл.	зачет
3	7	Проме- жуточная аттестация	Зачетная работа.	-	5	5 балов: более 80% правильных ответов. 4 балла: от 70% до 80% правильных ответов. 3 балла: от 50% до 70% правильных ответов. 2 балла: от 30% до 50% правильных ответов. 1 балл: от 10% до 30% правильных ответов. 0 баллов: менее 10% правильных ответов.	зачет
4	8	Текущий контроль	Контрольная работа.	1	5	Контрольная работа содержит 5 теоретических вопросов. За верный ответ на каждый из них начисляется 1 балл.	экзамен
5	8	Текущий контроль	Контрольная работа.	1	5	Контрольная работа содержит 5 теоретических вопросов. За верный ответ на каждый из них начисляется 1 балл.	экзамен
6	8	Проме- жуточная аттестация	Экзамен.	1		5 балов: более 80% правильных ответов. 4 балла: от 70% до 80% правильных ответов. 3 балла: от 50% до 70% правильных ответов. 2 балла: от 30% до 50% правильных ответов. 1 балл: от 10% до 30% правильных ответов. 0 баллов: менее 10% правильных ответов.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	Контрольное мероприятие промежуточной аттестации не является обязательным. Оно проводится в форме письменного экзамена по билетам. Билет содержит 10 вопросов по тематике вопросов для подготовки к экзамену. Время выполнения: 60 минут. Во время подготовки к ответу запрещено использование печатных и электронных носителей информации.	
зачет	Контрольное мероприятие промежуточной аттестации не	В соответствии с

является обязательным. Оно проводится в форме письменного зачета по билетам. Билет содержит 10 вопросов по тематике вопросов для подготовки к зачету. Время выполнения: 60 минут. Во время подготовки к ответу запрещено использование печатных и электронных носителей	
информации.	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1	№ 2	2 K	(N 4	Л 5 (5
ПК-3	Знает: физические основы квантовой электроники и развивающихся на их основе технологий и устройств работающих в оптическом диапазоне; принципы действия, характеристики, параметры и технологические особенности важнейших узлов и элементов, используемых в оптических системах	+	+	+-	+-	+	+
ПК-3	Умеет: проводить расчет параметров устройств, работающих в оптическом диапазоне	+	+	+	-	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

- б) дополнительная литература:
 - 1. Розеншер, Э. Оптоэлектроника Э. Розеншер, Б. Винтер; Пер. с фр. под ред. О. Н. Ермакова. М.: Техносфера, 2004. 588, [1] с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Квантовая электроника
 - 2. Журнал экспериментальной и теоретической физики
- г) методические указания для студентов по освоению дисциплины:
 - 1. спектральная эллипсометрия

из них: учебно-методическое обеспечение самостоятельной работы студента:

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1		ЭБС издательства Лань	Делоне, Н. Б. Квантовая физика / Н. Б. Делоне. — Москва : ФИЗМАТЛИТ, 2004. — 88 с. — ISBN 5-9221-0459-4. — Текст : электронный // Лань : электронно-библиотечная система. https://e.lanbook.com/book/2725
2	Основная	ЭБС издательства	Киселев, Г. Л. Квантовая и оптическая электроника:

	литература		учебное пособие / Г. Л. Киселев. — 4-е изд., стер. — Санкт- Петербург : Лань, 2020. — 316 с. — ISBN 978-5-8114-4986- 6. https://e.lanbook.com/book/130188	
3	Основная литература	ЭБС издательства Лань	Сивухин, Д. В. Общий курс физики: учебное пособие / Д. В. Сивухин. — 3-е изд.,стер. — Москва: ФИЗМАТЛИТ, [б. г.]. — Том 4: Оптика — 2002. — 792 с. — ISBN 5-9221-0228-1. https://e.lanbook.com/book/2314	
4	ľ '	ЭБС издательства Лань	Крюков, П. Г. Фемтосекундные импульсы. Введение в новую область лазерной физики / П. Г. Крюков. — Москва : ФИЗМАТЛИТ, 2008. — 208 с. — ISBN 978-5-9221-0941-3. https://e.lanbook.com/book/221	
5	ľ '	ЭБС издательства Лань	Лосев, В. Ф. Мощные газовые лазеры: учебное пособие / В. Ф. Лосев. — Томск: ТПУ, 2009. — 110 с. — Текст: электронный // Лань: электронно-библиотечная система. https://e.lanbook.com/book/10276	
6	Дополнительная ЭБС издательства литература Лань		Смирнов, Ю. А. Основы нано- и функциональной электроники: учебное пособие / Ю. А. Смирнов, С. В. Соколов, Е. В. Титов. — 2-е изд., испр. — Санкт-Петербург: Лань, 2013. — 320 с. — ISBN 978-5-8114-1378-2. https://e.lanbook.com/book/5855	
7		ЭБС издательства Лань	Игнатов, А. Н. Оптоэлектроника и нанофотоника : учебное пособие / А. Н. Игнатов. — 3-е изд., стер. — Санкт-Петербург : Лань, 2019. — 596 с. — ISBN 978-5-8114-4437-3. https://e.lanbook.com/book/11982	

Перечень используемого программного обеспечения:

- 1. Math Works-MATLAB (Simulink R2008a, SYMBOLIC MATH)(бессрочно)
- 2. -Maple 13(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия	609 (16)	комплект оптического оборудования
Лекции	604 (1б)	проектор
Экзамен	604 (1б)	компьютер
1	607 (1б)	проектор