ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранитев в системе заектронного документооборога ПОУрг У Ожно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кънгия Д. С. Подъзонатель: klygachds рага подписания: 23 05 2023

Д. С. Клыгач

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.С0.03 Структурный синтез радиосистем для специальности 11.05.01 Радиоэлектронные системы и комплексы уровень Специалитет специализация Цифровые радиосистемы и комплексы управления форма обучения очная кафедра-разработчик Радиоэлектроника и системы связи

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.05.01 Радиоэлектронные системы и комплексы, утверждённым приказом Минобрнауки от 09.02.2018 № 94

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, д.техн.н., проф., профессор Эасктронный документ, подписанный ПЭЦ, хранитея в системе электронного документооборота Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдви: Knatray Д. C. Пользователь: Alygachds

Д. С. Клыгач

Заектронный документ, подписанный ПЭП, хранится в системе заектронного заюментосформ (Омургу Пожно Ураниского государственного унверситета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Омур выдан: Тележкин В. Ф. (Овакователь: telezhkin

В. Ф. Тележкин

1. Цели и задачи дисциплины

Цели дисциплины: Обучение студентов основным понятиям, моделям и методам анализа и синтеза структур радиосистем управления. По завершению освоения данной дисциплины студент способен и готов: - обобщать, анализировать, воспринимать информацию, ставить цель и выбирать пути её достижения; стремиться к саморазвитию, повышению своей квалификации и мастерства; самостоятельно работать, принимать решения в рамках своей профессиональной деятельности; - понимать сущность и значение системного и структурного подходов при принятии решений в различных областях знаний; - анализировать различного рода рассуждения, публично выступать, аргументировано вести дискуссию и полемику; -собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии; - проводить расчеты с использованием стандартных программных средств с целью получения оптимальных решений для моделей интегрированных систем; использование математических методов и математических основ структурного синтеза; исследование задач, критериев и методов теории композиционного проектирования; изучение новых подходов качественной теории синтеза радиосистем, базирующейся на системном анализе состояния прикладных информационных технологий, закономерностей функционирования и развития систем, методов и моделей теории систем и др. и, как результат, выработка навыков системного мышления у студентов и подготовка их к решению практических задач анализа и синтеза систем. Задачи дисциплины: овладение основными методами математического программирования; выработка умения самостоятельного математического анализа техникоэкономических задач; развитие логического и алгоритмического мышления; знание основных задач композициионного проектирования и методов их решения; представление о развитии теории и методов структурного синтеза и о проблемах применения ПЭВМ для решения задач структурного синтеза; умение оптимизировать типовые радиосистемы и комплексы управления с раз-личными функционалами качества. воспитание высокой математической культуры; привитие навыков современных видов математического мышления; использование математических методов и математических основ оптимизации технических решений практической деятельности; исследование задач, критериев и методов теории оптимального проектирования. Кроме того, целью дисциплины является изучение новых подходов качественной теории оптимальных радиосистем, базирующейся на системном анализе состояния прикладных информационных технологий, закономерностей функционирования и развития систем, методов и моделей теории систем и др. и, как результат, выработать навыки системного мышления у студентов и подготовить их к решению практических задач анализа и синтеза систем. По завершению освоения данной дисциплины студент способен и готов: стремиться к саморазвитию, повышению своей квалификации и мастерства; критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков; учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности; собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной

науки, техники и технологии; изучать и использовать специальную литературу и другую научно-техническую информацию, отражающую достижения отечественной и зарубежной науки и техники в области создания оптимальных средств радиотехники. Задачами дисциплины являются -овладение основными методами математического программирования; -выработка умения самостоятельного математического анализа технико-экономических задач; -развитие логического и алгоритмического мышления; -знать основные задачи оптимизации и методы их решения; -иметь представление о развитии теории и методов оптимизации и о проблемах применения ПЭВМ для решения задач оптимизации; -уметь оптимизировать типовые радиосистемы и комплексы управления с различными функционалами качества.

Краткое содержание дисциплины

Содержание дисциплины соответствует Государственному образовательному стандарту специальности в части выполнения требований, предъявляемым к уровню профессиональной квалификации выпускников, их знаний, умений и навыков по соответствующему циклу дисциплин. Содержание дисциплины соответствует междисциплинарной логике, а соотношение объемов основных разделов программы соответствует учебному плану. Бюджет времени, отводимого на различные виды аудиторных занятий (лекционные, лабораторные), согласован с бюджетом самостоятельной работы студентов различной формы (индивидуальные занятия, подготовка к лабораторным работам). Программа обучения ориентированна на применение компьютерной техники и различного программного обеспечения. Предмет курса и его задачи: Краткий исторический обзор. Значение и роль методов структурного синтеза (СС) в задачах построения сложных технических систем. Классификация задач, методов СС. Постановка задач СС. Математические модели основных классов задач СС. Примеры задач СС. Общие вопросы теории СС: Понятия системы, структуры, структурного элемента, функции и параметров системы. Классификация параметров и глобальная функция системы. Методы повышения качества системы. Методы инженерного анализа и синтеза систем. Натурные испытания, физическое моделирование, аналитическое, численное и имитационное моделирование. Аналогия и подобие в теории моделирования. Разновидности методов проектирования систем. Требования, предъявляемые к математическим моделям. Методы оценки точности моделей. Классификация математических моделей. Распределенные, сосредоточенные и информационные модели. Полные модели и макромодели. Способы построения макромоделей. Понятие функциональной и структурной моделей, сравнительный анализ. Многоуровневые модели. Имитационное моделирование. Синтез оптимальных систем автоматического управления: Структурная схема оптимальной системы с наблюдателем полного порядка. Программа обучения ориентированна на применение компьютерной техники и различного программного обеспечения.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-1 Способен осуществлять анализ состояния	Знает: основные принципы оптимального

проектирования радиоэлектронных систем и комплексов управления (РЭСиКУ) Умеет: применять современные методы моделирования и оптимизации РЭСиКУ Имеет практический опыт: применения методов моделирования и оптимизации РЭСиКУ на ЭВМ
Знает: методы оптимизации существующих и новых технических решений в условиях априорной неопределенности, области применения современных методов структурного синтеза сложных радиосистем Умеет: применять современный математический аппарат для решения задачи оптимизации, решать задач анализа и структурного синтеза сложных радиосистем с помощью математических методов Имеет практический опыт: владения методами оптимизации проектируемых радио-электронных систем и комплексов.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Основы проектирования нелинейных	
радиосистем и комплексов управления,	Основы построения непрерывно дискретных
Основы радиофотоники,	радиосистем и комплексов управления,
Методы вторичной обработки в	Многоуровневые радиосистемы и комплексы
радиолокационных системах и комплексах,	управления,
Основы квантовой радиоэлектроники,	Синтез алгоритмов оценивания и управления в
Основы теории радиосистем и комплексов	радиосистемах
управления	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Дисциплина	Требования Знает: современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в области радиоуправления., методики разработки стратегии действий для выявления и решения
Основы теории радиосистем и комплексов управления	проблемной ситуации. понимает роль информации в современном мире. Умеет: использовать современную элементную базу, измерительную и вычислительную технику, информационные технологии
	припроектировании систем радиоуправления., применять системный подход для решения поставленных задач Имеет практический опыт: владения методами системного подхода к анализу и синтезу систем радиоуправления., владения навыками критического восприятия,

	поиска, анализа и синтеза информации.
	Знает: классификацию оборудования для
	построения сетей оптической связи; основные
	физические и математические модели квантовых
	приборов и компонентов систем, используемых
	на этапах расчета и проектирования
етоды вторичной обработки в диолокационных системах и комплексах	радиоэлектронных систем и комплексов;
	основные научно-технические проблемы и
	перспективы развития квантовых и
	оптоэлектронных приборов и устройств,
	математический аппарат квантовой электроники,
	теории волн и электродинамики сплошных сред
	для анализа работы и расчета характеристик
F	устройств и систем оптического диапазона;
	основные законы естественнонаучных
	дисциплин в профессиональной деятельности;
	основные принципы построения и расчета
Основи валиофоточниц	оптических сетей; Умеет: рассчитывать
осповы радиофотоники	основные параметры ВОЛС; использовать
	базовые элементы квантовой и оптической
	электроники; применять основные методы
	анализа квантовых и оптоэлектронных устройств
	для решения задач в системах передачи и
	обработки информации, использовать базовые
	элементы квантовой и оптической электроники;
	применять основные методы анализа квантовых
	и оптоэлектронных устройств для решения задач
	в системах передачи и обработки информации
	Имеет практический опыт: методологией
	измерения характеристик радиотехнических
	систем оптического диапазона., навыками
	расчета оптоволоконных линий связи;
	методологией использования аппаратуры для
	измерения характеристик радиотехнических
	систем оптического диапазона
	Знает: основные проблемы и перспективы
	развития алгоритмов вторичной обработки,
	методы оптимизации существующих и новых
	технических решений в условиях априорной
	неопределенности, алгоритмы вторичной
	обработки в радиосистемах и комплексах при
	сопровождении подвижных объектов Умеет:
	сформулировать цели и задачи по заданной
M ~ ~ ~	проблеме, применять современный
	математический аппарат для решения задачи
радиолокационных системах и комплексах	оптимизации, осуществлять обоснованный
	выбор структурных схем реализации алгоритмов
	моделирования Имеет практический опыт:
	владения методами оптимизации проектируемых
	радиолокационных систем и комплексов,
	методами анализа и синтеза для решения данной
	проблемы, использования методов оптимизации
	алгоритмов в радиоэлектронных системах и
	комплексах.
	Знает: математический аппарат квантовой
Основы квантовой радиоэлектроники	электроники, теории волн и электродинамики
	рлектропики, теории волн и электродинамики

сплошных сред для анализа работы и расчета характеристик устройств и систем оптического диапазона; основные закономерности, содержание и сущность процессов и явлений, устройство, принципы действия квантовых приборов и систем. основные законы естественнонаучных дисциплин; методы вычислительной физики и математического моделирования структур, приборов квантовой и оптической электроники., основные научнотехнические проблемы и перспективы развития квантовых и оптоэлектронных приборов и устройств, а также основные области их применения и степени экологической опасности; основные физические и математические модели кванто-вых приборов и компонентов систем, используемых на этапах расчета и проектирования радиоэлектронных сис-тем и комплексов Умеет: использовать математический аппарат квантовой электроники, теории волн и электродинамики сплошных сред для анализа работы и расчета характеристик приборов квантовой электроники; использовать возможности и технические характеристики приборов и устройств квантовой и оптической электроники в современных радиосистемах, использовать базовые элементы квантовой и оптической электроники и применять основные методы анализа квантовых и оптоэлектронных устройств для решения задач в системах передачи и обработки информации; ориентироваться в технической документации, делать оптимальный выбор оборудования. Имеет практический опыт: навыками привлекать для решения проблем, возни-кающих в ходе профессиональной деятельности, соответствующий физико-математический аппара; навыками использования устройств квантовой и опти-ческой электроники в радиоэлектронных системах;, методиками расчета основных характеристик систем связи, локационных и навигационных систем и комплексов, использующих оптический диапазон; методологией использования аппаратуры для измерения характеристик радиотехнических систем оптического диапазона; методами использования физических и математических моделей компонентов и устройств оптического диапазона, используемых на этапах расчета и проектирования систем и комплексов

Основы проектирования нелинейных радиосистем и комплексов управления

Знает: современные нелинейные радиосистемы управления, направления развития, современные методы расчета, анализа и проектирования нелинейных радиосистем управления. Умеет: рассчитывать характеристики линейных и

нелинейных радиосистем управления,
разрабатывать алгоритмы управления для
реализации требуемых законов управления,
реализовывать разработанные алгоритмы,
разрабатывать техническое задание на
проектирование. Имеет практический опыт:
владения современным программным
обеспечением для моделирования радиосистем
управления, навыками построения моделей
нелинейных систем и работы с ними.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 74,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 9
Общая трудоёмкость дисциплины	144	144
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	32	32
Самостоятельная работа (СРС)	69,5	69,5
Композиционное проектирование	30	30
Нейросетевые технологии	39,5	39.5
Консультации и промежуточная аттестация	10,5	10,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
	1	Всего	Л	П3	ЛР
1	введение.	4	4	0	0
2	Общие вопросы теории моделирования.	10	4	0	6
3	Общие вопросы теории оптимизации.	12	6	0	6
4	Синтез оптимальных радиосистем управления.	14	6	0	8
1 3	Решение задач управления для стационарных нестационарных систем	24	12	0	12

5.1. Лекции

No	No		Кол-
Наименование или краткое содержание лекционного занятия	во		
лскции	пекции раздела		часов
1	1	Предмет курса и его задачи. Краткий исторический обзор. Значение и роль	4

		-	
		методов моделирования и оптимизации в задачах построения сложных технических систем. Классификация задач, методов моделирования и оптимизации. Постановка задач моделирования и оптимизации. Математические модели основных классов оптимизационных задач. Примеры задач моделирования и оптимизации.	
2	2	Системный подход к моделированию. Понятия системы, структуры, структурного элемента, функции и параметров системы. Классификация параметров и глобальная функция системы. Методы повышения качества системы. Методы инженерного анализа и синтеза систем.	4
3	3	Натурные испытания, физическое моделирование, аналитическое, численное и имитационное моделирование. Аналогия и подобие в теории моделирования. Разновидности методов проектирования систем. Требования, предъявляемые к математическим моделям. Методы оценки точности моделей. Классификация математических моделей. Распределенные, сосредоточенные и информационные модели.	6
4	4	Синтез оптимальных систем автоматического управления. Классификация вариационных задач на условный экстремум. Методы решения. Решение задачи Лагранжа на условный экстремум. Синтез линейной системы, оптимальной по квадратичному функционалу, на основе уравнения Эйлера-Пуассона.	2
5	4	Основная теорема принципа максимума Понтрягина. Принцип максимума Понтрягина для линейных систем управления. Динамическое программирование. Принцип оптимальности Р. Беллмана. Рекуррентное соотношение Беллмана для решения дискретных задач управления.	4
6	5	Структура системы управления с оптимальным регулятором. Структура оптимальной системы.	6
7	5	Решение задачи оптимальной стабилизации для линейных стационарных систем: регулирование состояния системы, регулирование выхода системы. Структурная схема оптимальной системы с наблюдателем полного порядка.	6

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	2	Составление математических моделей.	2
2	2	Множественная регрессия, дисперсный анализ.	2
3	2	Линейный и нелинейный метод наименьших квадратов	1
4	2	Системы массового обслуживания	1
5	3	Метод покоординатного спуска	2
6	3	одномерная оптимизация	2
7	•	поиск экстремума с использованием методов: деления интервала пополам, дихотомии, «золотого сечения», чисел Фибоначчи	2
8	4	Решение задач линейного программирования	6
9	4	Решение задач линейного программирования	2
10	` `	Решение задач линейного и нелинейного программирования в системе MATLAB	4
11	5	Синтез оптимального линейного регулятора.	4

5.4. Самостоятельная работа студента

Выполнение СРС			
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Композиционное проектирование		9	30
Нейросетевые технологии	Круглов В.В. Нечеткая логика и искусственные нейронные сети. Главы 23,4, стр.45-143	9	39,5

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	9	Текущий контроль	Концептуальный синтез структуры радиоэлектронных систем и комплексов управления	10	10	85% - 100% (отлично) — 7 — 10 баллов — Более 84% ответов правильные. 75% - 84% (хорошо) — 5 — 6 баллов — От 75 до 84% ответов правильные, допущены незначительные неточности. 60% - 74% (удовлетворительно) — 2 — 4 балла — От 60 до 74% ответов правильные, допущены значительные неточности, часть ответов отсутствует. 1% - 59% (неудовлетворительно) — 1 балл — Менее 60% правильные, допущены грубые неточности, часть ответов отсутствует. 0 баллов студент получает в случае невыполнения задания.	экзамен
2	9	Текущий контроль	Проектирование унифицированных технических систем и больших систем	10	10	85% - 100% (отлично) — 7 — 10 баллов — Более 84% ответов правильные. 75% - 84% (хорошо) — 5 — 6 баллов — От 75 до 84% ответов правильные, допущены незначительные неточности. 60% - 74% (удовлетворительно) — 2 — 4 балла — От 60 до 74% ответов правильные, допущены значительные неточности, часть ответов отсутствует.	экзамен

						1% - 59% (неудовлетворительно) – 1 балл – Менее 60% правильные, допущены грубые неточности, часть ответов отсутствует. 0 баллов студент получает в случае невыполнения задания.	
3	9	Проме- жуточная аттестация	Структурный синтез	-	10	85% - 100% (отлично) — 7 — 10 баллов — Более 84% ответов правильные. 75% - 84% (хорошо) — 5 — 6 баллов — От 75 до 84% ответов правильные, допущены незначительные неточности. 60% - 74% (удовлетворительно) — 2 — 4 балла — От 60 до 74% ответов правильные, допущены значительные неточности, часть ответов отсутствует. 1% - 59% (неудовлетворительно) — 1 балл — Менее 60% правильные, допущены грубые неточности, часть ответов отсутствует. 0 баллов студент получает в случае невыполнения задания.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	получаем: оценка "отлично", если в сумме набрано не менее 84	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ KN 2	
ПК-1	Знает: основные принципы оптимального проектирования радиоэлектронных систем и комплексов управления (РЭСиКУ)	+		
ПК-1	Умеет: применять современные методы моделирования и оптимизации РЭСиКУ	+		
	Имеет практический опыт: применения методов моделирования и оптимизации РЭСиКУ на ЭВМ	+		
ПК-6	Знает: методы оптимизации существующих и новых технических решений в условиях априорной неопределенности, области применения современных методов структурного синтеза сложных радиосистем		+	+
ПК-6	Умеет: применять современный математический аппарат для решения задачи оптимизации, решать задач анализа и структурного синтеза сложных		+	+

	радиосистем с помощью математических методов		
ПК-6	Имеет практический опыт: владения методами оптимизации проектируемых		L
11K-0	радио-электронных систем и комплексов.		

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Васин, Г. Г. Анализ и синтез плоских механизмов с низшими кинематическими парами [Текст] Ч. 1 конспект лекций по курсу ТММ для студ.-заоч. Г. Г. Васин, А. И. Варанкин, В. А. Пермяков; под ред. Г. Г. Васина; ЧПИ им. Ленинского комсомола, Каф. Теория механизмов и машин; ЮУрГУ. Челябинск: Издательство ЧПИ, 1982. 67 с. ил.
 - 2. Тихонов, В. И. Статистический анализ и синтез радиотехнических устройств и систем Учеб. пособие для радиотехн. спец. вузов. М.: Радио и связь, 1991. 608 с. ил.
- б) дополнительная литература:
 - 1. Ахметшин, Н. И. Синтез и анализ механизмов с низшими кинематическими парами Ч. 2 Учеб. пособие ЧПИ им. Ленинского комсомола, Каф. Теория механизмов и машин; Н. И. Ахметшин, А. И. Варанкин, П. Г. Виницкий и др.; Под ред. А. И. Варанкина; ЮУрГУ. Челябинск: ЧПИ, 1984. 84 с.
 - 2. Синтез и анализ плоских рычажных механизмов Ч. 2 Учеб. пособие ЧПИ им. Ленинского комсомола, Каф. Теория механизмов и машин; Н. И. Ахметшин, П. Г. Виницкий, В. А. Лившиц и др.; ЮУрГУ. Челябинск: ЧПИ, 1987. 43 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. методические указания
 - 2. лекции по структурному синтезу радиосистем
 - 3. Методичекое пособие

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. методические указания
- 2. лекции по структурному синтезу радиосистем
- 3. Методичекое пособие

Электронная учебно-методическая документация

J	Vο	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
]			*	лекции по структукрному синтезу радиосистем https://lib.susu.ru/

_		
	ступента	
	студента	

Перечень используемого программного обеспечения:

1. Math Works-MATLAB (Simulink R2008a, SYMBOLIC MATH)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	502 (ПЛК)	мультимедийное оборудование
Лабораторные занятия	502 (ПЛК)	компьютерная техника