ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель специальности

Электронный документ, подписанный ПЭП, хранитея в системе мектронного документооборога Южно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ширяев В. И. Польователь: shiraeve. 1 Польователь з

В. И. Ширяев

РАБОЧАЯ ПРОГРАММА

дисциплины ФД.03 Методы и средства моделирования систем управления с элементами искусственного интеллекта

для специальности 24.05.06 Системы управления летательными аппаратами **уровень** Специалитет

форма обучения очная

кафедра-разработчик Системы автоматического управления

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 24.05.06 Системы управления летательными аппаратами, утверждённым приказом Минобрнауки от 04.08.2020 № 874

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, старший преподаватель Эасктронный документ, подписанный ПЭЦ, хранитея в системе засктронного документооборота ЮУргу Иожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Шираев В. И. Пользователь: shiraevil

В. И. Ширяев

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского госуларетвенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Колу выдаи: Щербаков В. П. Поньзователь: scherbakovp дага подписания: 63 06 2024

В. П. Щербаков

1. Цели и задачи дисциплины

Цель дисциплины - научить студентов применять методы и средства моделирования систем управления с элементами искусственного интеллекта. Задачи дисциплины: получение умений и навыков работы в программных продуктах для решения задач моделирования системам управления с элементами искусственного интеллекта.

Краткое содержание дисциплины

Рассматриваются методы и программные средства моделирования систем управления с элементами искусственного интеллекта.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ОПК-5 Способен разрабатывать физические и математические модели исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере деятельности, для решения инженерных задач	Знает: методы построения моделей систем управления с элементами искусственного интеллекта Умеет: решать задачи моделирования систем управления с элементами искусственного интеллекта с применением программных продуктов Имеет практический опыт: построения в программных продуктах моделей систем с элементами искусственного интеллекта

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
1.О.13 Теоретическая механика, 1.О.24 Дискретные системы автоматического управления, 1.О.29 Механика полета, 1.О.20 Материаловедение и технология конструкционных материалов, 1.О.14 Техническая механика, 1.О.33 Моделирование динамических систем, 1.О.19 Теоретические основы электротехники, 1.О.30 Формализация информационных представлений и преобразований, 1.О.31 Математические основы теории управления	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.13 Теоретическая механика	Знает: модели, законы, принципы теоретической

	T
	механики для применения их в
	профессиональной деятельности Умеет:
	применять законы механики, составлять
	математические модели, решающие задачи
	механики Имеет практический опыт: решения
	математических моделей, решающих задачи
	механики
	Знает: теорию матричного исчисления, линейные
	пространства и линейные преобразования,
	евклидовы пространства и квадратичные формы,
	алгоритмы построения функций матриц и их
	свойства; теорему существования и
	единственности решения для нормальной
	системы дифференциальных уравнений, методы
	решения систем линейных дифференциальных
	уравнений; теорему об управляемости объекта,
	методики составления дифференциальных
	уравнений подвижных объектов, метод
	пространства состояний в теории систем,
	понятие устойчивости движения, методику
	исследования устойчивости систем по первому
	приближению и вторым методом Ляпунова;
	критерии управляемости и наблюдаемости
	линейных систем, теорему о необходимых
1.О.31 Математические основы теории	условиях оптимальности; принцип максимума
управления	Понтрягина Умеет: выполнять различные
	операции с множествами (арифметические
	операции, нахождение расстояния между
	множествами, нахождение образа множества);
	находить опорные функции различных множеств
	и их пересечений, находить положения
	равновесия, определять их характер и
	изображать фазовые траектории
	линеаризованных систем в окрестности
	положений равновесия для автономных систем;
	исследовать устойчивость положений равновесия
	с помощью системы первого приближения и вторым методом Ляпунова Имеет практический
	1
	опыт: применения методик исследования движения управляемых объектов, применения
	принципа максимума Понтрягина, применения
	методики синтеза оптимального управления для
	линейной задачи быстродействия
	Знает: базовые положения дискретной математики для формального представления
	информационных объектов и процессов;
	способы их параметризации Умеет: использовать и обосновывать применяемые базовые
1.О.30 Формализация информационных	положения дискретной математики для
представлений и преобразований	
представлении и преооразовании	формального представления информационных
	формального представления информационных
	объектов и процессов, способы их
	объектов и процессов, способы их параметризации Имеет практический опыт:
	объектов и процессов, способы их параметризации Имеет практический опыт: применения базовых положений дискретной
	объектов и процессов, способы их параметризации Имеет практический опыт: применения базовых положений дискретной математики для формального описания
1.О.33 Моделирование динамических систем	объектов и процессов, способы их параметризации Имеет практический опыт: применения базовых положений дискретной

	объектов и процессов с использованием		
	программных средств моделирования, методы		
	программирования нелинейных нестационарных		
	динамических систем, способы разработки		
	графического интерфейса пользователя с		
	использованием средств моделирования систем		
	Умеет: выполнять построение моделей		
	динамических систем, объектов и процессов в		
	программных продуктах моделирования систем,		
	программировать нестационарные нелинейные		
	динамические системы и разрабатывать		
	графический интерфейс пользователя в		
	средствах моделирования систем Имеет		
	практический опыт: моделирования нелинейных		
	нестационарных динамических систем, объектов		
	и процессов в программных продуктах,		
	разработки программ с графическим		
	интерфейсом пользователя для решения задач		
	профессиональной деятельности в средствах		
	моделирования систем		
	Знает: маркировку, основные эксплуатационные		
	свойства конструкционных материалов Умеет:		
	составлять перечень материалов при серийном		
1.0.20.14	производстве образцов новой техники Имеет		
1.О.20 Материаловедение и технология	практический опыт: выбора конструкционных		
конструкционных материалов	материалов при производстве деталей, узлов и		
	приборов в зависимости от условий		
	эксплуатации и требований, предъявляемых к		
	изделию		
	Знает: методы моделирования технических		
	объектов на основе дифференциальных		
	уравнений; методы z-преобразований; методы		
	анализа дискретных систем на основе		
	передаточных функций Умеет: моделировать		
1 O 24 H	дискретные системы управления; применять z-		
1.О.24 Дискретные системы автоматического	преобразования для многомерных дискретных		
управления	систем; применять методы анализа дискретных		
	систем на основе передаточных функций Имеет		
	практический опыт: применения методов z-		
	преобразования для многомерных дискретных		
	систем, методов анализа дискретных систем на		
	основе передаточных функций		
	Знает: основные понятия и определения,		
	теоремы и законы механики, область их		
	применения для основных применяемых при		
	изучении механики моделей, основные		
	принципы сопротивления материалов,		
	классификацию видов нагружения стержня,		
1 O 14 T	механические характеристики материалов,		
1.О.14 Техническая механика	методы механического и математического		
	моделирования типовых элементов машин и		
	конструкций; общие принципы и методы		
	инженерных расчетов типовых элементов машин		
	и конструкций на прочность Умеет:		
	разрабатывать расчетные модели типовых		
	элементов конструкций, выполнять расчеты на		
	partition noticipy nation, politonini participi ila		

	прочность типовых элементов, моделируемых с
	помощью стержня при простых видах
	нагружения Имеет практический опыт:
	разработки расчетных моделей типовых
	элементов конструкций, навыками решения
	практических задач расчета на прочность
	типовых элементов машин и конструкций
	Знает: основные положения механики, системы
	координат, уравнения движения летательных
	аппаратов, методы построения математических
	моделей движения летательных аппаратов Умеет:
	применять математический аппарат разделов
	механики полета для проведения
	фундаментальных исследований в области
1.О.29 Механика полета	систем управления движением летательных
	аппаратов, применять методы построения
	математических моделей движения летательных
	аппаратов Имеет практический опыт:
	применения математических моделей
	летательных аппаратов в различных условиях
	полета, разработки математических моделей
	движения летательных аппаратов
	Знает: возможности применения
	электротехнических устройств в большинстве
	промышленных производственных процессов в
	качестве наиболее гибких из известных способов
	поставки энергоносителя к технологическому
	процессу; допустимые пределы поставок
	электроэнергии при ограничении по пробивному
	напряжению и по напряженности магнитного
	поля; возможности преобразования энергии
	электромагнитного поля в высокотемпературные
	поля, в механическую энергию, в
	электрохимические процессы, основные методы
	расчетов электрических цепей при стационарных
	режимах постоянного тока, синусоидального
	тока, при периодических несинусоидальных
	токах; критерии оптимальных условий передачи
1.О.19 Теоретические основы электротехники	мощностей и энергии между различными
11.0.19 Теоретические основы электротехники	частями электрической цепи; способы
	исследования нестационарных режимов
	электрических цепей и способы оптимизации их
	с точки зрения аварийных значений параметров
	состояния Умеет: применять теоретические
	знания свойств электромагнитного поля и
	электрических цепей в проектировании сложных
	промышленных электротехнических устройств;
	оценивать уровень реализации практического
	электротехнического устройства и возможности
	его совершенствования на основе самых
	современных представлений о способах
	использования электроэнергии, выполнять
	расчет параметров состояния электрической
	цепи в стационарном режиме постоянного тока,
	синусоидального тока и при периодических
	несинусоидальных воздействиях; анализировать

и получать количественные характеристики нестационарных режимов электрических цепей, их возможные аварийные характеристики; уклонять электрическую цепь от крайних и экстремальных параметров состояния Имеет практический опыт: применения методов теоретического анализа сложных электротехнических устройств и цепей; приемов оптимизации имеющихся практических устройств электротехники: приемов конкурентного сравнения различных вариантов использования электроэнергии и приемов количественного представления всех свойств проектируемых электротехнических устройств, применения методов дискуссионного отстаивания своих вариантов решения технической задачи в электротехнике: обоснования технической и экономической целесообразности собственных технических решений

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 8
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к зачету	11,75	11.75
Подготовка к практическим занятиям	24	24
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
	1 11 11	Всего	Л	П3	ЛР
1 1	Методы проектирования систем управления с элементами искусственного интеллекта	8	8	0	0
	Средства моделирования систем управления с элементами искусственного интеллекта	24	8	16	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Элементы искусственного интеллекта в системах управления	2
2		Гетоды проектирования линейных систем управления с элементами скусственного интеллекта	
3		Методы проектирования нелинейных нестационарных систем управления с элементами искусственного интеллекта	2
4	2	Моделирование и обучение нейронных сетей	2
5	2	Моделирование линейных систем с элементами искусственного интеллекта	4
6	2	Моделирование нелинейных нестационарных систем с элементами искусственного интеллекта	2

5.2. Практические занятия, семинары

№ занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1		Моделирование и обучение нейронных сетей в программных продуктах моделирования систем	4
2	2	Моделирование линейных систем с элементами искусственного интеллекта	4
3		Моделирование нелинейных нестационарных систем с элементами искусственного интеллекта	4
4	2	Моделирование систем управления подвижными объектами с элементами искусственного интеллекта	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
Подготовка к зачету	1. Мещерина, Е. В. Системы искусственного интеллекта: учебнометодическое пособие - с. 50-69, с. 81-87. 2. Смолин, Д. В. Введение в искусственный интеллект: конспект лекций: учебное пособие - глава 2, с. 152-163. 3. Остроух, А. В. Системы искусственного интеллекта: монография - глава 5, с. 169-187.	8	11,75	
Полготорка к практическим запатиям	1. Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления. Часть 1: учебное пособие - с. 30-54. 2. Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления.	8	24	

Часть 2: учебное пособие - с. 3-42. 3. Романов, П. С. Системы искусственного интеллекта. Моделирование нейронных сетей в системе МАТLAB. Лабораторный практикум: учебное пособие для вузов - глава 3, с. 35-62; глава 4, с. 64-104. 4. Мещерина, Е. В. Системы искусственного интеллекта: учебно-методическое пособие - с. 50-69, с. 81-87. 5. Смолин, Д. В. Введение в искусственный интеллект: конспект лекций: учебное пособие -	
конспект лекций: учебное пособие - глава 2, с. 152-163. 6. Остроух, А. В. Системы искусственного интеллекта: монография - глава 5, с. 169-187.	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	8	Текущий контроль	Решение задачи № 1	0,25	5	На практическом занятии студент получает индивидуальное задание по теме и приступает к его выполнению. На выполнение задания отводится 4 академических часа. В конце занятия студент представляет преподавателю результаты выполнения согласно варианту задания. Преподаватель проверяет работу во внеаудиторное время и выставляет оценку. Оценка за мероприятие соответствует сумме набранных баллов за мероприятие: 1 балл за проектирование системы для выполнения обучения нейронной сети; 2 балла за корректное обучение нейронной сети; 1 балл за проектирование системы с обученной нейронной сетью.	зачет
2	8	Текущий контроль	Решение задачи № 2	0,25	5	На практическом занятии студент получает индивидуальное задание по теме и приступает к его выполнению. На выполнение задания отводится 4 академических часа. В конце занятия студент представляет преподавателю результаты выполнения согласно варианту задания. Преподаватель проверяет работу во	зачет

				1		T	, ,
						внеаудиторное время и выставляет оценку.	
						Оценка за мероприятие соответствует сумме	
						набранных баллов за мероприятие:	
						1 балл за проектирование системы для	
						выполнения обучения нейронной сети;	
						1 балл за формирование данных для	
						выполнения обучения нейронной сети;	
						2 балла за корректное обучение нейронной	
						сети;	
						1 балл за проектирование системы с	
						обученной нейронной сетью.	
						На практическом занятии студент получает	
						индивидуальное задание по теме и	
						приступает к его выполнению. На	
						выполнение задания отводится 4	
				0,25		академических часа. В конце занятия	
						студент представляет преподавателю	
						результаты выполнения согласно варианту	
						задания. Преподаватель проверяет работу во	
		Тамичий	Решение задачи № 3			внеаудиторное время и выставляет оценку.	
3	8	Текущий			5	Оценка за мероприятие соответствует сумме	зачет
		контроль				набранных баллов за мероприятие:	
						1 балл за проектирование системы для	
						выполнения обучения нейронной сети;	
						1 балл за формирование данных для	
						выполнения обучения нейронной сети;	
						2 балла за корректное обучение нейронной	
						сети;	
					ı	1 балл за проектирование системы с	
						обученной нейронной сетью.	
						На практическом занятии студент получает	
				0,25		индивидуальное задание по теме и	
			Решение задачи № 4			приступает к его выполнению. На	
						выполнение задания отводится 4	
						академических часа. В конце занятия	
						студент представляет преподавателю	
						результаты выполнения согласно варианту	
						задания. Преподаватель проверяет работу во	
						внеаудиторное время и выставляет оценку.	
4	8	Текущий			5	Оценка за мероприятие соответствует сумме	зачет
		контроль				набранных баллов за мероприятие:	
						1 балл за проектирование системы для	
						выполнения обучения нейронной сети;	
						1 балл за формирование данных для	
						выполнения обучения нейронной сети;	
						2 балла за корректное обучение нейронной	
						сети;	
						1 балл за проектирование системы с	
						обученной нейронной сетью.	
			ая зачетная работа	-		Зачетная работа проводится в устной форме.	
		Проме- жуточная аттестация				Студенту выдается билет, состоящий из 2-х	
						вопросов, которые позволяют оценить	
5	8				5	сформированность компетенций.	зачет
	G				5	Ответы оцениваются по пятибалльной	34701
						системе:	
						5 баллов за исчерпывающие ответы на	
						р оаллов за исчернывающие ответы на	

задаваемые вопросы. 4 балла за правильные, но не развернутые ответы на задаваемые вопросы. 3 балла за ответы на задаваемые вопросы с упущениями и неточностями. 2 балла за ответы на задаваемые вопросы с ошибками. 1 балл за ответы на задаваемые вопросы с грубыми ошибками. 0 баллов за недостаточный уровень понимания материала.

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	промежуточной аттестации. Реитинг ооучающегося по	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	N 1	<u>[o</u>	К 3	M 4	5
IOHK-5	ПК-5 Знает: методы построения моделей систем управления с элементами искусственного интеллекта		+	+-	+	+
UHIK-7	Умеет: решать задачи моделирования систем управления с элементами искусственного интеллекта с применением программных продуктов		+	+-	+	+
ICHTK-5	Имеет практический опыт: построения в программных продуктах моделей систем с элементами искусственного интеллекта		+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:

1. Известия Академии наук. Теория и системы управления науч. журн. Рос. акад. наук, Отд-ние энергетики, машиностроения, механики и

процессов управления, Гос. науч.-исслед. ин-т авиац. систем (ГосНИИАС) журнал. - М.: Наука, 1995-

- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания по освоению дисциплины "Методы и средства моделирования систем управления с элементами искусственного интеллекта" (для СРС) (в локальной сети кафедры)
 - 2. Методические указания по освоению дисциплины "Методы и средства моделирования систем управления с элементами искусственного интеллекта" (в локальной сети кафедры)

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания по освоению дисциплины "Методы и средства моделирования систем управления с элементами искусственного интеллекта" (для СРС) (в локальной сети кафедры)

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
- 11	Основная литература	Электронно- библиотечная система издательства Лань	Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления: учебное пособие: в 3 частях / Г. А. Сырецкий. — Новосибирск: НГТУ, [б. г.]. — Часть 2: Нейросетевые системы. Генетический алгоритм — 2017. — 92 с. https://e.lanbook.com/book/118282
12.	Основная литература	Электронно- библиотечная система издательства Лань	Романов, П. С. Системы искусственного интеллекта. Моделирование нейронных сетей в системе MATLAB. Лабораторный практикум: учебное пособие для вузов / П. С. Романов, И. П. Романова. — Санкт-Петербург: Лань, 2021. — 140 с. https://e.lanbook.com/book/179031
13	литература	Электронно- библиотечная система издательства Лань	Сырецкий, Г. А. Искусственный интеллект и основы теории интеллектуального управления: учебное пособие / Г. А. Сырецкий. — Новосибирск: НГТУ, [б. г.]. — Часть 1: Фазисистемы — 2016. — 92 с. https://e.lanbook.com/book/118268
4	Основная литература	Электронно- библиотечная система издательства Лань	Мещерина, Е. В. Системы искусственного интеллекта: учебно-методическое пособие / Е. В. Мещерина. — Оренбург: ОГУ, 2019. — 96 с. https://e.lanbook.com/book/160008
I٦	Основная литература		Смолин, Д. В. Введение в искусственный интеллект: конспект лекций: учебное пособие / Д. В. Смолин. — 2-е изд., перераб. — Москва: ФИЗМАТЛИТ, 2007. — 264 с. https://e.lanbook.com/book/2325
10	литература		Остроух, А.В. Системы искусственного интеллекта: монография / А.В. Остроух, Н.Е. Суркова. — 2-е изд., стер. — Санкт-Петербург: Лань, 2021. — 228 с. https://e.lanbook.com/book/176662

Перечень используемого программного обеспечения:

1. Math Works-MATLAB, Simulink R2014b(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические		ЭВМ с системой "Персональный Виртуальный Компьютер" (ЮУрГУ)
занятия и семинары	(3б)	для доступа к MATLAB