ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОУДГУ Южно-Уранского тосударственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдал: Григорые М. А. Пользователь: grigorevma Lara подписания: 10.09.2024

М. А. Григорьев

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.01 Суперкомпьютерное моделирование мехатронных систем **для направления** 15.04.04 Автоматизация технологических процессов и производств

уровень Магистратура

магистерская программа Промышленная автоматизация **форма обучения** заочная

кафедра-разработчик Электропривод, мехатроника и электромеханика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств, утверждённым приказом Минобрнауки от 25.11.2020 № 1452

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, старший преподаватель Эаектронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдви: Григорые М. А. Пользователь: grigorevm при дета подписания. 90 90 2024

М. А. Григорьев

Электронный документ, подписанный ПЭП, хранится в системе электронного документооброта (КУРГУ КЭМО-УРЕДИИ В СЕВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Свостесню И Н. В (Польовитель: savostecnkory

Н. В. Савостеенко

1. Цели и задачи дисциплины

Цель изучения дисциплины: ознакомление студентов с современными высокопроизводительными вычислениями и специализированными пакетами программ, которые используются для решения задач на суперкомпьютерах. Задачи изучения дисциплины: приобретение студентами прочных знаний и практических навыков в области, определяемой основной целью дисциплины. В результате изучения дисциплины студенты должны уметь решать задачи на суперкомпьютере в параллельном режиме.

Краткое содержание дисциплины

Расчеты на суперкомпьютере с использованием специализированных программных пакетов. Модели, их типы. Природа моделей. Моделирование. Цели моделирования. Этапы моделирования. САЕ/САО системы. Основные понятия. История развития САЕ/САО систем. Примеры САЕ/САО систем. Возможности САЕ/САО систем. Обмен файлами между суперкомпьютером и персональным компьютером, постановка задачи на решение на суперкомпьютере. Задачи для суперкомпьютеров. Приложения, где используются суперкомпьютерные вычисления. Методы, используемые для решения задач на суперкомпьютерах в специализированных пакетах программ. Метод конечных элементов. Метод конечных объемов. Преимущества и недостатки методов. Сходимость и точность. Общие принципы построения пакетов программ, реализующих метод конечных элементов и метод конечных объемов. Базовые понятия параллельных вычислений. Необходимость и значимость параллельных вычислений. Режимы выполнения задач: последовательный, псевдопараллельный, параллельный. Виды параллелизма: многопроцессорная обработка, конвейерная обработка, векторная обработка. Пути достижения параллелизма вычислений. Суперкомпьютеры: производительность, списки Тор500, Тор50. Классификация параллельных систем: систематика Флинна. Кластеры. Топология соединительных сетей мультикомпьютеров. Оценка эффективности параллельных вычислений: ускорение, эффективность, стоимость. Закон Амдала. Закон Густафсона.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-2 Способен контролировать разработку проекта автоматизированной системы управления технологическими процессами.	Знает: Правила разработки комплектов проектной и рабочей документации на автоматизированные системы управления технологическими процессами. Умеет: Согласовывать и принимать результаты работ по подготовке проектной документации автоматизированной системы управления технологическим процессом Имеет практический опыт: Выбора оборудования для автоматизированной системы управления технологическим процессом.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Автоматизированные системы проектирования	Производственная практика (преддипломная) (5 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования				
дисциплина	Знает: Современные основы				
	автоматизированного проектирования объектов				
	промышленной автоматизации, действующие				
	стандарты оформления проектной				
	документации., Стадии и процедуры процесса				
	проектирования, особенности проектных				
	процедур при предпроектной стадии разработки				
	автоматизированных объектов., Действующие				
	стандарты, нормы и правила связанные с				
	профессиональной деятельностью., Методы и				
	программные средства автоматизированного				
	проектирования нормативно-технической				
	документации., Существующие				
	автоматизированные системы управления				
	технологическими процессами, разработанные				
	отечественными и зарубежными производителями. Умеет: Понимать и				
	проектировать схемы ПЛК для объект				
	промышленной автоматизации, оформлять				
	проектную документацию согласно				
	действующим государственным нормам и				
	правилам., Применять программные продукты				
Автоматизированные системы проектирования	САПР при проектировании автоматизированных				
	систем., Оценивать качество содержания и				
	формы документированной информации на				
	соответствие установленным требованиям				
	стандартов, норм и правил., Применять				
	программный инструментарий разработки				
	технического и программного обеспечения., Осуществлять разработку структурных схем				
	автоматизированной системы управления				
	технологическим процессом. Имеет				
	практический опыт: Сбора информации об				
	автоматизированных системах управления				
	технологическими процессами и используемом				
	оборудовании ведущих производителей., Работы				
	в программах автоматизированного				
	проектирования., Анализа и экспертизы				
	нормативно-технической документации				
	связанной с профессиональной деятельностью с				
	учетом стандартов, норм и правил., Решения				
	стандартных задач при проектировании систем				
	автоматизации средствами автоматизированного				
	проектирования с применением информационно-				
	коммуникационных технологий., Разработки				

пояснительной записки на различных стадиях
проектирования автоматизированной системы
управления технологическим процессом.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч., 38,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
Общая трудоёмкость дисциплины	216	216
Аудиторные занятия:	24	24
Лекции (Л)	12	12
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	12	12
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	177,5	177,5
Изучение тем и проблем, не выносимых на лекции и практические занятия	57,5	57.5
Написание рефератов	56	56
Подготовка к диф. зачету	64	64
Консультации и промежуточная аттестация	14,5	14,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
раздела	1 11 11	Всего	Л	П3	ЛР	
	Расчеты на суперкомпьютерах с использованием специализированных программных пакетов.	12	0	12	0	
2	Базовые понятия параллельных вычислений.	12	12	0	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	2	Модели, их типы и моделирование.	2
2	2	CAE/CAD системы. Основные понятия. Примеры CAE/CAD систем.	2
4	/.	Методы, используемые для решения задач на суперкомпьютерах в специализированных пакетах программ.	2
5	2	Понятие параллельных вычислений.	2
7	2	Классификация параллельных вычислительных систем.	2
8	2	Оценка эффективности параллельных вычислений.	2

5.2. Практические занятия, семинары

№ занятия	<u>№</u> раздела	I Наименование или краткое солержание практического занятия семинара	Кол-во часов
19-21	1	Решение 2D задач на суперкомпьютере. Пакет программ ANSYS.	4
22-24	1	Решение 3D задач на суперкомпьютере. Пакет программ ANSYS.	6
25-26	1	Работа с анализом полученных результатов в постпроцессинге	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Изучение тем и проблем, не выносимых на лекции и практические занятия	ПУМД: [Осн. лит., 3], с. 44 - 56, ЭУМД: УМО для СРС [1], с 3-6, Профессиональные базы данных и информационные справочные системы: [1], Программное обеспечение: [1], [2].	3	57,5		
Написание рефератов	ПУМД: [Осн. лит., 1], с. 324-351, [Осн. лит., 2], с. 36-50, Программное обеспечение: [1], [2], Методические пособия для самостоятельной работы студента: [1].	3	56		
Подготовка к диф. зачету	ПУМД: [Осн. лит., 1], с. 12-18., [Доп. лит., 2], с. 314-328, Программное обеспечение: [1], [2].	3	64		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	Семестровая работа №1	1	5	Семестровая работа №1 выполняется в письменной форме. В семестровой работе приводятся результаты моделирования. За выполненную работу начисляются баллы по следующим критериям: 5 баллов - ключевые точки статических характеристик, полученных на	дифференцированный зачет

						математической модели совпадают с рассчитанными аналитически 4 балла - ключевые точки статических характеристик	
						отличаются не более, чем на 10%, студент может объяснить причину расхождения 3 балла - ключевые точки статических характеристик отличаются не более, чем на 10%, студент не может объяснить причину расхождения 2 балла - ключевые точки статических характеристик отличаются более, чем на 10%, студент может объяснить причину расхождения 0 баллов - ключевые точки статических характеристик отличаются более, чем на 10%, студент не может	
						объяснить причину расхождения	
2	3	Проме- жуточная аттестация	Зачет	-	5	Зачет проводится в устной форме. К зачету допускаются студенты, выполнившие все семестровые задания. На зачете студент получает вопрос по проделанной работе. Ответ оценивается преподавателем по следующим критериям: 5 баллов - студент может объяснить результаты моделирования с учетом теоретических аспектов 4 балла - студент может объяснить результаты моделирования 3 балла - студент отвечает на вопрос по выполненной работе, но не способен ответить на уточняющие вопросы 2 балла - студент не может ответить на поставленный вопрос.	дифференцированный зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной	Процедура проведения	Критерии
аттестации	процедура проведения	оценивания
дифференцированный	К зачету допускаются студенты, выполнившие все	В соответствии

	n	2526
зачет		с пп. 2.5, 2.6
	В аудитории находится преподаватель и не более 15	Положения
	человек из числа студентов. Во время проведения зачета	
	студентам запрещается иметь при себе и использовать	
	средства связи (сотовые телефоны, микрофоны и пр.).	
	Оценка на зачете рассчитывается по рейтингу	
	обучающегося по дисциплине Rд на основе рейтинга по	
	текущему контролю Втек плюс бонусные баллы Вб	
	(максимум 15) по формуле: Rд=Rтек+Rб, где Rтек=0,3	
	КМ1+0,3 КМ2+ 0,4 КМ3 рассчитывается на основе	
	баллов, набранных обучающимся по результатам	
	текущего контроля с учетом весовых коэффициентов. Но	
	студент вправе улучшить свой результат при помощи	
	сдачи промежуточной аттестации, тогда рейтинг	
	обучающегося по дисциплине рассчитывается по	
	формуле: Rд=0,6 Rтек+0,4 Rпа+Rб, где Rпа – рейтинг за	
	промежуточную аттестацию. Критерии оценивания:	
	«Зачтено» – Rд больше или равно 60%; «Не зачтено» – Rд	
	меньше 60%.	

6.3. Паспорт фонда оценочных средств

Компетенции	и Результаты обучения		№ KM	
		1	4	2
ПК-2	Знает: Правила разработки комплектов проектной и рабочей документации на автоматизированные системы управления технологическими процессами.	+	_	⊢
ПК-2	Умеет: Согласовывать и принимать результаты работ по подготовке проектной документации автоматизированной системы управления технологическим процессом	+	-	⊦
IIIK – Z	Имеет практический опыт: Выбора оборудования для автоматизированной системы управления технологическим процессом.	+	_	<u> </u>

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Каплун, А. Б. Ansys в руках инженера [Текст] практ. рук. А. Б. Каплун, Е. М. Морозов, М. А. Олферьева ; предисл. А. С. Шадского. Изд. стер. М.: URSS : ЛИБРОКОМ, 2014. 269 с. ил.
- 2. Гергель, В. П. Высокопроизводительные вычисления для многопроцессорных многоядерных систем [Текст] учебник для студентов высших учебных заведений, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информационные технологии" В. П. Гергель; Б-ка Нижегор. гос. ун-та им. Н. И. Лобачевского; Суперкомпьютерный консорциум университетов России. Москва: Физматлит, 2010. 539, [4] с. ил. 25 см
- 3. Практикум по методам параллельных вычислений [Текст] учебник для вузов по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информационные

- технологии" А. В. Старченко и др.; под ред. А. В. Старченко; Том. гос. ун-т. М.: Издательство Московского университета, 2010. 199 с. ил. 21 см
- 4. Костенецкий, П. С. Моделирование параллельных систем баз данных [Текст] учеб. пособие для магистрантов и аспирантов П. С. Костенецкий, Л. Б. Соколинский; Юж.-Урал. гос. ун-т, Каф. Систем. программирование; ЮУрГУ. Челябинск: Фотохудожник, 2012. 78 с. ил.

б) дополнительная литература:

- 1. Воеводин, В. В. Параллельные вычисления Учеб. пособие для вузов по направлению 510200 "Прикладная математика и информатика" В. В. Воеводин, Вл. В. Воеводин. СПб.: БХВ-Петербург, 2004. 599 с.
- 2. Сегерлинд, Л. Дж. Применение метода конечных элементов Пер. с англ. А. А. Шестакова; Под ред. Б. Е. Победри. М.: Мир, 1979. 392 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Южно-Уральский государственный университет (ЮУрГУ) Челябинск Вестник Южно-Уральского государственного университета Юж.-Урал. гос. ун-т; ЮУрГУ журнал. Челябинск: Издательство ЮУрГУ, 2001-
 - 2. Supercomputing frontiers and innovations [Текст] науч. журн. Chief ed. J. Dongarra, V. Voevodin журнал. Chelyabinsk: Publishing center of South Ural State University, 2014-
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания по освоению дисциплины «Суперкомпьютерное моделирование мехатронных систем»

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания по освоению дисциплины «Суперкомпьютерное моделирование мехатронных систем»

Электронная учебно-методическая документация

$\mathcal{N}_{\underline{0}}$	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	литература		Федорова, Н.Н. Основы работы в ANSYS 17. [Электронный ресурс] / Н.Н. Федорова, С.А. Вальгер, М.Н. Данилов, Ю.В. Захарова. – Электрон. дан. – М.: ДМК Пресс, 2017. – 210 с. – Режим доступа: – Загл. с экрана. http://e.lanbook.com/book/90112
2	Основная литература	Электронно- библиотечная система издательства Лань	Басов, К.А. ANSYS и LMS Virtual Lab. Геометрическое моделирование. [Электронный ресурс] – Электрон. дан. – М.: ДМК Пресс, 2009. – 240 с http://e.lanbook.com/book/1295
13	Основная литература	Электронно- библиотечная система издательства Лань	Басов, К.А. Графический интерфейс комплекса ANSYS. [Электронный ресурс] – Электрон. дан. – М.: ДМК Пресс, 2008. – 248 с. http://e.lanbook.com/book/1290
4	Дополнительная	Электронно-	Глазков, Ю.Ф. Специальные главы прочности. Расчет

		система издательства Лань	тонкостенных и стержневых конструкций методом конечных элементов. [Электронный ресурс] – Электрон. дан. – Кемерово: КузГТУ имени Т.Ф. Горбачева, 2012. – 79 c. http://e.lanbook.com/book/69416
5	литература	библиотечная система	Шашурин, В.И. Решение задач механики сплошной среды в программном комплексе ANSYS. [Электронный ресурс] — Электрон. дан. — М.: МГТУ им. Н.Э. Баумана, 2009. — 40 с http://e.lanbook.com/book/52147

Перечень используемого программного обеспечения:

1. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. EBSCO Information Services-EBSCOhost Research Databases(28.02.2017)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары		Центр компьютерных технологий и цифровых систем управления в промышленности, имеющий 11 оборудованных рабочих мест. Каждое рабочее место оснащено компьютером. Содержит полный комплект программного обеспечения для моделирования процессов силовых полупроводниковых преобразователей в программе MatLab+Simulink. Имеются необходимые аудиовизуальные средства обучения.
Практические занятия и семинары	526- 3 (1)	Компьютерный класс имеет 14 персональных компьютеров с выходом в Интернет (ресурсы и фонды библиотек). Открытые коммерческие ресурсы для академического доступа. Отечественные и зарубежные журналы по дисциплине. Научно-техническая информация, содержащая сведения о новых типах электротехнических комплексов. Реестры и бюллетени ФИПС (Научно-техническая информация, содержащая сведения о новых типах полупроводниковых приборов).
Лекции	456 (1)	Мультимедийная система, включающая проектор, камеру, мультимедийный экран, акустическое сопровождение.