ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:
Декан факультета
Аэрокосмический
р п С
<u> </u>

РАБОЧАЯ ПРОГРАММА к ОП ВО от 28.06.2017 №007-03-1196

дисциплины ДВ.1.01.02 Математическое моделирование и оптимизация при проектировании боеприпасов для специальности 17.05.01 Боеприпасы и взрыватели уровень специалист тип программы Специалитет специализация Технология производства, снаряжения и испытаний боеприпасов форма обучения очная кафедра-разработчик Процессы и машины обработки металлов давлением

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 17.05.01 Боеприпасы и взрыватели, утверждённым приказом Минобрнауки от 12.09.2016 № 1161

Зав.кафедрой разработчика,		
д.техн.н., проф.	26.04.2017	В. Г. Шеркунов
(ученая степень, ученое звание)	(подпись)	
Разработчик программы,		
старший преподаватель	26.04.2017	В. А. Иванов
(ученая степень, ученое звание,		D. 11. 115w 1105
должность)		
СОГЛАСОВАНО		
Декан факультета разработчика		
к.техн.н.		М. А. Иванов
(ученая степень, ученое звание)	(подпись)	WI. 71. FIBATION
Зав.выпускающей кафедрой Двига	атели летательных аппаратов	
д.техн.н., проф.	26.04.2017	С Л Волин
(ученая степень, ученое звание)	(подпись)	С. Д. Ваулин

1. Цели и задачи дисциплины

Цели: формирование представления о месте и роли математического моделирования при проектировании боеприпасов; формирование навыков построения и верификации математических моделей объектов исследования. Задачи: изучение методов математического моделирования, получение навыков определения целей и задач моделирования; получение знаний и навыков необходимых для применения методов математического моделирования при проектировании боеприпасов; получение знаний и навыков необходимых для подготовки, проведения, обработки результатов экспериментов и их содержательной интерпретации; получение знаний и навыков необходимых для решения оптимизационных задач; ознакомление с типичными математическими моделями объектов в сфере профессиональной деятельности.

Краткое содержание дисциплины

Курс включает в себя 16 часов лекционных занятий, 32 часа практических работ, на самостоятельную работу студента отводится 60 часов. По курсу предусмотрена курсовая работа. Вид итогового контроля по курсу - диф. зачёт. Зачет по курсу проводится по вопросам. Основное содержание курса раскрывается в 7 разделах. В разделе 1 "Введение" излагается информация касающаяся актуальности данного курса, ставятся цели и задачи, приводится порядок освоения дисциплины, оговариваются контрольные мероприятия, доводятся сведения об объемах самостоятельной работы и критериях её оценки, студентам предлагается дополнительно поставить персональные цели для освоения данного курса. В разделе 2 "Общие сведения о математическом моделировании" вводятся основные положения системного подхода к исследованию технологических объектов; излагаются основные базовые понятия, цели и задачи математического моделирования, классификация математических моделей, границы применимости математического моделирования, как метода исследования. В разделе 3 "Способы создания математических моделей технологических объектов" излагаются основные подходы к созданию математических моделей. В разделе 4 "Теоретические методы построения математических моделей технологических объектов" рассматриваются теоретические методы построения математических моделей: имитационное моделирование, инженерные методы, энергетический метод, проекционные методы, метод конечных разностей, метод конечных элементов. В разделе 5 "Экспериментальные методы построения математических моделей технологических объектов" рассматриваются вопросы постановки целей и задач экспериментального исследования, планирования отсеивающих экспериментов, планирования полнофакторных экспериментов, обработки результатов, их содержательной интерпретации, методы оценки адекватности построенной математической модели. В разделе 6 "Оптимизационные модели и задачи оптимизации" изучаются подходы к решению оптимизационных задач, рассматриваются методы оптимизации составов, последовательный симплексный метод, метод крутого спуска(восхождения) и др. В разделе 7 "Прикладные задачи математического моделирования при проектировании боеприпасов" рассматриваются конкретные примеры математических моделей применительно к сфере профессиональной деятельности.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине (ЗУНы)
	Знать: основные подходы к разработке
	математических моделей физических процессов;
	основные классы математических моделей;
	теоретические основы построения
	математических моделей; методы
	экспериментального построения математических
	моделей; основы системного подхода к
	исследованию технологических процессов и
	производственных объектов.
ПК-9 способностью самостоятельно	Уметь: строить простые математические модели;
разрабатывать математические модели	проводить декомпозицию исследуемых систем
физических процессов при функционировании	на составные части в соответствии с
образцов боеприпасов и взрывателей	функциональными и конструктивными
	признаками; планировать, проводить и
	обрабатывать результаты экспериментальных
	исследований; отыскивать, с использованием
	математических моделей, оптимальные решения
	в условиях различных ограничений.
	Владеть:навыками построения теоретических и
	экспериментальных математических моделей;
	навыками системного анализа; навыками
	отыскания оптимальных решений.
	Знать:основы построения вычислительных
	алгоритмов, знать базовый синтаксис языка С,
	знать основы параллельного программирования.
ПК-10 способностью составлять и отлаживать	Уметь:уметь строить алгоритмы для реализации
прикладные программы по разработанным	простейших математических моделей, писать
математическим моделям	последовательные и параллельные программы на
	языке С, отлаживать написанные программы.
	Владеть:навыками написания и отладки
	программ.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Б.1.26 Введение в специальность, Б.1.11 Информатика и программирование, Б.1.09.03 Специальные главы математики	ДВ.1.02.02 Внутренняя баллистика двигательных установок реактивных боеприпасов, Б.1.42 Технология производства и снаряжения боеприпасов, ДВ.1.02.01 Внутренняя баллистика ствольных систем, В.1.11 Автоматизация процессов производства, снаряжения и испытания боеприпасов, ДВ.1.05.02 Основы технологии сборки при производстве боеприпасов, Б.1.37 Основы проектирования средств поражения,
	1 1

деятельности, Б.1.40 Конструкторско-технологическая
подготовка производства средств поражения, Научно-исследовательская работа (10 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования		
Б.1.11 Информатика и программирование	Знать: основы программирования на языке С, основы построения алгоритмов решения прикладных задач. Уметь: писать и отлаживать простые программы.		
Б.1.26 Введение в специальность	Знать: объект и предмет профессиональной деятельности, сферу будущей профессиональной деятельности, типичные задачи возникающие при производстве и испытаниях боеприпасов.		
Б.1.09.03 Специальные главы математики	Знать: физический и геометрический смысл производных и интегралов; методы решения дифференциальных уравнений, систем дифференциальных уравнений, систем линейных уравнений; понятийный аппарат для описания случайных процессов; Располагать основными сведениями по линейному математическому программированию. Уметь решать типовые системы линейных уравнений и неравенств, дифференциальные уравнения и их системы.		

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч.

		Распределение по семестрам в часах		
Вид учебной работы	часов	Номер семестра		
		4		
Общая трудоёмкость дисциплины	108	108		
Аудиторные занятия	48	48		
Лекции (Л)	16	16		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32		
Лабораторные работы (ЛР)	0	0		
Самостоятельная работа (СРС)	60	60		
Курсовая работа	46	46		
Подготовка к практическим занятиям		10		
Подготовка к зачету	4	4		
Вид итогового контроля (зачет, диф.зачет, экзамен)	-	диф.зачет,КР		

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	раздела		Л	П3	ЛР
1	Введение	2	2	0	0
2	Общие сведения о математическом моделировании	8	2	6	0
3	Способы создания математических моделей технологических объектов	2	2	0	0
4	Теоретические методы построения математических моделей технологических объектов	10	2	8	0
5	Экспериментальные методы построения математических моделей технологических объектов	16	4	12	0
6	Оптимизационные модели и задачи оптимизации	8	2	6	0
/	Прикладные задачи математического моделирования при проектировании боеприпасов	2	2	0	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		Введение. Общее содержание курса. Требования к освоению содержания курса. Литература. Опрос.	2
2	2	Общие сведения о математическом моделировании. Термины и определения. Системный подход. Классификация математических моделей. Цели и задачи математического моделирования. Границы применимости математического моделирования, как метода исследования.	2
3	3	Способы создания математических моделей технологических объектов. Эмпирический и эвристический подходы. Обобщение и детализация математических моделей.	2
4		Теоретические методы построения математических моделей технологических объектов. Имитационное моделирование. Инженерный, энергетический, проекционный методы. Конечно-разностные методы. Метод конечных элементов.	2
5	3	Экспериментальные методы построения математических моделей технологических объектов. Постановка целей и задач экспериментального исследования. Отсеивающие эксперименты. Планирование полнофакторных экспериментов.	2
6	5	Экспериментальные методы построения математических моделей технологических объектов. Обработка результатов эксперимента. Содержательная интерпретация результатов эксперимента. Проверка адекватности математической модели. Ограничения применимости полученных экспериментальных математических моделей.	2
7	6	Оптимизационные модели и задачи оптимизации. Термины и определения. Линейное программирование. Диаграмма Шеффе. Симплексные методы.	2
8	/	Прикладные задачи математического моделирования при проектировании боеприпасов. Задача о движении тела под действием сил тяжести в безвоздушном пространстве. Задача о прочности тонкостенного цилиндра под действием осевых нагрузок. Критерии оптимизации.	2

5.2. Практические занятия, семинары

No	№	Наименование или краткое содержание практического занятия, семинара	Кол-
занятия	раздела	наныенование или краткое содержание практи теского запитии, семинара	во

			часов
1	2	Системный анализ технологического объекта. Определение главной функции системы. Построение компонентной модели системы.	2
2	2	Системный анализ технологического объекта. Классификация взаимодействий между элементами системы.	2
3	2	Системный анализ технологического объекта. Постановка целей и задач дальнейшего исследования системы.	2
4	4	Инженерная методика анализа распределения сил по передней и задней поверхности режущего клина.	2
5	4	Построение имитационной модели для технологического процесса изготовления тихоходного вала редуктора	2
6	4	Практическая реализация метода конечных разностей на примере одномерной задачи теплопроводности	2
7	4	Практическая реализация метода конечных элементов на примере задачи изгиба балки с односторонним жестким закреплением.	2
8	5	Постановка задачи экспериментального исследования. Определение откликов. Постановка целей и задач исследования.	2
9	5	Постановка задачи экспериментального исследования. Определение варьируемых параметров	2
10	5	Отсеивающие эксперименты. Метод Плакетта-Бермана.	2
11	5	Отсеивающие эксперименты. Метод Саттерзвайта (метод случайного баланса).	2
12	5	Планирование полнофакторного эксперимента. Обработка результатов.	2
13	5	Проверка адекватности полученной математической модели. Содержательная интерпретация результатов эксперимента.	2
14	6	Решении задач оптимизации методом линейного математического программирования с ограничениями в виде неравенств	2
15	6	Решение задач оптимизации составов с использованием диаграммы Шеффе.	2
16	6	Решение оптимизационных задач последовательным симплексным методом.	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов		
Курсовая работа	Математическое моделирование и оптимизация при проектировании боеприпасов: методические указания к освоению дисциплины [Электронный документ] / В.А. Иванов. – Челябинск: Издательский центр ЮУрГУ, 2017. – с. 15-22	46		
Подготовка к практически занятиям	Математическое моделирование и оптимизация при проектировании боеприпасов: методические указания к освоению дисциплины [Электронный документ] / В.А. Иванов. – Челябинск: Издательский центр ЮУрГУ, 2017. – с. 8,	10		

	9, 11-13, 15-24.	
Подготовка к зачету	Математическое моделирование и оптимизация при проектировании боеприпасов: методические указания к освоению дисциплины [Электронный документ] / В.А. Иванов. – Челябинск: Издательский центр ЮУрГУ, 2017. – с. 23-24.	4

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных занятий	Вид работы (Л, ПЗ, ЛР)	Краткое описание	Кол-во ауд. часов
Мультимедийные лекции	Лекции		16

Собственные инновационные способы и методы, используемые в образовательном процессе

Инновационные формы обучения	Краткое описание и примеры использования в темах и разделах
Разбор конкретных ситуаций	Лекционный материал сопровождается примерами использования математического моделирования на промышленных предприятиях, приводится опыт реальной практики применения и создания отдельных программных продуктов, программно-аппаратных комплексов для математического моделирования при выполнении проектных работ. В качестве примеров рассматриваются как крупные отечественные предприятия "ВСМПО-Ависма", ЧТПЗ, ЧМК, ЧКПЗ, так и предприятия малого и среднего бизнеса. На основе конкретных примеров применения, рассматриваются вопросы целесообразности и эффективности математического моделирования. Студентам предлагается самостоятельно оценить результативность использования математического моделирования в конкретных случаях.

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: Стругов С.С. Моделирование процесса холодной штамповки эксцентрических трубных переходов комбинированным методом «обжим-раздача» /С.С. Стругов, В.А. Иванов, Ю.М. Погорелов // Кузнечноштамповочное производство. Обработка материалов давлением, 2016. — №. — с. 29-32. Стругов, С.С. Сравнение методов оценки напряженно-деформированного состояния при осадке цилиндрической заготовки /С.С. Стругов, В.А. Иванов, В.Г. Шеркунов // Вестник ЮУрГУ. Серия Металлургия, 2016. — том 16. — №4. — с. 140-146. DOI: http://dx.doi.org/10.14529/met160416 Sokolinskaya I., Sokolinsky L. Revised Pursuit Algorithm for Solving Non-Stationary Linear Programming Problems on Modern Computing Clusters with Manycore Accelerators // Supercomputing. RuSCDays 2016. Communications in Computer and Information Science. 2016. Vol. 687. P. 212-223. DOI: 10.1007/978-3-319-55669-7 17.

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины Контролируемая компетенция ЗУНы		Вид контроля (включая текущий)	№№ заданий
Все разделы	ПК-9 способностью самостоятельно разрабатывать математические модели физических процессов при функционировании образцов боеприпасов и взрывателей	Курсовая работа	1
Все разделы	ПК-9 способностью самостоятельно разрабатывать математические модели физических процессов при функционировании образцов боеприпасов и взрывателей	Диф. Зачет	1-50
Оптимизационные модели и задачи оптимизации	ПК-10 способностью составлять и отлаживать прикладные программы по разработанным математическим моделям	Курсовая работа	1
Все разделы	ПК-10 способностью составлять и отлаживать прикладные программы по разработанным математическим моделям	Диф. Зачет	1-50

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
Диф. Зачет	В билете 1 теоретический вопрос и 1 практическое задание. Время на выполнение 45 минут.	Отлично: Ответы на теоретический вопрос и практическое задание верные. Хорошо: Ответы на теоретический вопрос и практическое задание верные. Но имеются некоторые неточности в формулировках, ошибки в вычислениях. Удовлетворительно: Один из ответов на теоретический вопрос или на практическое задание неверный. Неудовлетворительно: Все ответы не верные.
Курсовая работа	Оценивается на соответствие требованиям к оформлению, оценивается правильность	Отлично: Оформление пояснительной записки соответствует требованиям. Все разделы выполнены в точном соответствии с заданием. Нет ошибок в расчетах. Хорошо: Оформление пояснительной записки не в полной мере соответствует требованиям (2-3 несоответствия). Все разделы выполнены в точном соответствии с заданием. Нет ошибок в расчетах. Удовлетворительно: Оформление пояснительной записки не соответствует требованиям. Все разделы выполнены в точном соответствии с заданием. Имеются ошибки в расчетах. Неудовлетворительно: Оформление пояснительной записки не соответствует требованиям. Не все разделы выполнены, или имеются значительные отступления от задания. Имеются ошибки в расчетах.

7.3. Типовые контрольные задания

Вид контроля	Типовые контрольные задания
Диф. Зачет	Вопросы к зачету.docx
Курсовая работа	Курсовая работа_Задание.pdf

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Введение в математическое моделирование Учеб. пособие для студентов вузов В. Н. Ашихмин, М. Г. Бояршинов, М. Б. Гитман и др.; Под ред. П. В. Трусова. М.: Интермет Инжиниринг, 2000. 332 с.
- 2. Горский, В. Г. Планирование промышленных экспериментов Модели статики. М.: Металлургия, 1974. 264 с. черт.
- 3. Горский, В. Г. Планирование промышленных экспериментов: Модели динамики В. Г. Горский, Ю. П. Адлер, А. М. Талалай. М.: Металлургия, 1978. 112 с. ил.
- 4. Новик, Ф. С. Оптимизация процессов технологии металлов методами планирования экспериментов. М.: Машиностроение, 1980. 304 с. ил.

б) дополнительная литература:

- 1. Хартман, К. Планирование эксперимента в исследовании технологических процессов Пер. с нем. Фомина Г. А., Лецкого Н. С.; Под ред. Лецкого Э. К. М.: Мир, 1977. 552 с. ил.
- 2. Брусов, В. С. Оптимальное проектирование летательных аппаратов. Многоцелевой поток. М.: Машиностроение, 1989. 229 с. ил.
- 3. ГОСТ 7.32-2001 : Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления : введ. в действие 01.07.2002 : взамен ГОСТ 7.32-91 [Текст] Всерос. ин-т науч. и техн. информ. и др. Минск: Межгосударственный совет по стандартизации, метролог, 2001
- 4. ГОСТ 7.1-2003: Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Библиографическое описание. Общие требования и правила составления: введ. в действие 01.07.04: взамен ГОСТ 7.1-84, ГОСТ 7.16-79, ГОСТ 7.18-79, ГОСТ 7.34-81, ГОСТ 7.40-82 [Текст] Межгос. совет по стандартизации, метрологии и сертификации. М.: ИПК Издательство стандартов, 2004. 47 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование науч. журн. Юж.-Урал. гос. ун-т; ЮУрГУ журнал. Челябинск, 2008-
 - 2. Математическое моделирование : ежемес. журн. / Рос. акад. наук, Отд-ние мат. наук, Ин-т мат. моделирования РАН. М. : Наука , 1989-
- г) методические указания для студентов по освоению дисциплины:

- 1. Планирование и обработка эксперимента в ОМД: конспект лекций [Электронный документ] / Ф.С.Дубинский, М.А. Соседкова. Челябинск: Издательство ЮУрГУ, 2007. 25 с. Режим доступа: электронная библиотека кафедры ПиМОМД
- 2. Математическое моделирование сложных систем в металлургии: конспект лекций [Электронный документ] / А.В. Выдрин. Челябинск: Издательство ЮУрГУ, 2012. 66 с. Режим доступа: электронная библиотека кафедры ПиМОМД
- 3. Математическое моделирование и оптимизация при проектировании боеприпасов: методические указания к освоению дисциплины [Электронный документ] / В.А. Иванов. Челябинск: Издательский центр ЮУрГУ, 2017. 24 с. Режим доступа: электронная библиотека кафедры ПиМОМД

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 4. Планирование и обработка эксперимента в ОМД: конспект лекций [Электронный документ] / Ф.С.Дубинский, М.А. Соседкова. Челябинск: Издательство ЮУрГУ, 2007. 25 с. Режим доступа: электронная библиотека кафедры ПиМОМД
- 5. Математическое моделирование сложных систем в металлургии: конспект лекций [Электронный документ] / А.В. Выдрин. Челябинск: Издательство ЮУрГУ, 2012. 66 с. Режим доступа: электронная библиотека кафедры ПиМОМД
- 6. Математическое моделирование и оптимизация при проектировании боеприпасов: методические указания к освоению дисциплины [Электронный документ] / В.А. Иванов. Челябинск: Издательский центр ЮУрГУ, 2017. 24 с. Режим доступа: электронная библиотека кафедры ПиМОМД

Электронная учебно-методическая документация

Νº	Вид литературы	Наименование разработки	Ссылка на инфор- мационный ресурс	Наименование ресурса в электронной форме	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
1	Основная литература	Голубева, Н.В. Математическое моделирование систем и процессов. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2016. — 192 с. — Режим доступа: http://e.lanbook.com/book/76825 — Загл. с экрана.		ісистема	Интернет / Авторизованный
2	II ICHADHAT	Воскобойников, Ю.Е. Регрессионный анализ данных в пакете MATHCAD + CD. [Электронный ресурс] — Электрон. дан. — СПб. : Лань,	https://e.lanbook.com/	ісистема	Интернет / Авторизованный

2011. — 224 с. — Режим		
доступа: http://e.lanbook.com/book/666		
— Загл. с экрана.		

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

- 1. РСК Технологии-Система "Персональный виртуальный компьютер" (ПВК) (MS Windows, MS Office, открытое ПО)(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. -FreeMind(бессрочно)
- 4. Microsoft-Visual Studio(бессрочно)
- 5. PTC-MathCAD(бессрочно)

Перечень используемых информационных справочных систем:

- 1. -База данных ВИНИТИ РАН(бессрочно)
- 2. -Информационные ресурсы ФИПС(бессрочно)

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий	
Пекции	333 (Л.к.)	Компьютер, мультимедийное оборудование	
1	338 (Л.к.)	Компьютерный класс с выходом в локальную сеть университета	