ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель специальности

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дойкин А. А. Пользователь: dokana Дила подписания 2029-2025

А. А. Дойкин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.11.М14.01 Создание цифровых моделей деталей и механизмов в CAD-системах

для специальности 23.05.01 Наземные транспортно-технологические средства **уровень** Специалитет

форма обучения очная

кафедра-разработчик Технологии автоматизированного машиностроения

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 23.05.01 Наземные транспортно-технологические средства, утверждённым приказом Минобрнауки от 11.08.2020 № 935

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, к.техн.н., доц., доцент

Заектронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Южнь-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Гузеев В. И. Пользовтель: guzeevvi Пата подинсание 0 бо 2025

В. И. Гузеев

Электронный документ, подписанный ПЭП, хранится в системе электронного документообротка ПОУрГУ Ожно-Урапьского государственного универентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Больарев И. СПользователь: boldyrevis Lara подписания: 05 06 2025

И. С. Болдырев

1. Цели и задачи дисциплины

Цель: разработка с использованием CAD-систем обобщенных вариантов проектов машиностроительных изделий высокой сложности на основе создания их электронных параметрических моделей и определение на этой основе показателей технического уровня. Задачи изучения дисциплины: 1. Освоение с использованием CAD систем методики создания параметрических твердотельных моделей машиностроительных изделий высокой для расчета их рабочих параметров. 2. Освоение методики создания твердотельных моделей сборок и механизмов машиностроительных изделий и узлов высокой сложности для завершения их автоматизированного проектирования с использованием CAD систем.

Краткое содержание дисциплины

Дисциплина "Создание цифровых моделей деталей и механизмов в CAD-системах" направлена на освоение студентами методик выполнения проектных процедур при проектировании элементов технологического оснащения с использованием CAD систем. Для этого изучаются: методика разработки параметрических твердотельных моделей изделий машиностроения на основе их предварительного расчета по существующим методикам проектирования, а также сборка моделей из отдельных деталей. В результате изучения дисциплины студенты научатся завершать проектирование машиностроительных изделий в части автоматизированного оформления их трехмерных моделей.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: - имеет практический опыт использования
	современных конечноэлементных пакетов для
	расчетов на прочность; - имеет практический
	опыт подготовки геометрических моделей для
	последующего расчета методом конечных
	элементов в широко распространенных САЕ
УК-2 Способен управлять проектом на всех	системах; - имеет практический опыт расчетов
этапах его жизненного цикла	на прочность, анализа результатов и
	формулировки выводов
	Умеет: применять CAD-системы для
	проектирования деталей и механизмов
	машиностроительного назначения
	Имеет практический опыт: приемами создания
	цифровых моделей в CAD-системах

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,		
видов работ учебного плана	видов работ		
	1.Ф.11.М5.03 Моделирование материалов в		
1.О.29 Основы проектной деятельности	двигателестроении: получение, структура,		
1.0.29 Основы проектной деятельности	свойства,		
	1.Ф.11.М8.02 Оформление конструкторской		

T
документации с использованием систем
автоматизированного проектирования,
1.Ф.11.М11.02 Технологии заготовительного
производства обработкой металлов давлением,
1.Ф.11.М5.02 Программные комплексы
проектирования элементов двигателей,
1.Ф.11.М11.03 Проектирование сварных
соединений в изделии,
1.Ф.11.М2.03 Основы архитектурно-
дизайнерского проектирования, приемы
компьютерного моделирования,
1.Ф.11.М13.03 Расчеты на прочность,
1.Ф.11.М13.02 Проектирование деталей машин,
1.Ф.11.М14.03 Технологическое
программирование,
1.Ф.11.М1.02 Стратегии и принципы
транспортной логистики,
1.Ф.11.М14.02 Управление базами данных при
автоматизированном проектировании
технологических процессов,
1.Ф.11.М8.03 Основы промышленного дизайна,
1.Ф.11.М1.03 Управление производственными
процессами в логистике,
1.Ф.11.М2.02 Проектирование линий и
поверхностей средствами вычислительной
геометрии и компьютерной графики

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 72,5 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам в часах	
Zing y roman puccial	часов	Номер семестра	
		3	
Общая трудоёмкость дисциплины	144	144	
Аудиторные занятия:	64	64	
Лекции (Л)	32	32	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32	
Лабораторные работы (ЛР)	0	0	
Самостоятельная работа (СРС)	71,5	71,5	
Подготовка и защита отчетов по практическим занятиям	59,5	59.5	
Подготовка к диф. зачету	12	12	
Консультации и промежуточная аттестация	8,5	8,5	
Вид контроля (зачет, диф.зачет, экзамен)	-	диф.зачет	

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	-		Л	ПЗ	ЛР
1	Введение. Основы работы в САД-системах, основные понятия	16	8	8	0
2	Проектирование деталей машиностроения в CAD системе КОМПАС.	16	8	8	0
3	Создание сборок в CAD системе КОМПАС.	16	8	8	0
4	Создание механизмов и расчет их параметров (скоростей, ускорений, перемещений) в КОМПАС 3D на основе деталей и сборок.	16	8	8	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Введение. Классификация САД-систем: основы и исторический обзор.	4
2	1	Основы работы в программе Компас.	4
3	,	Проектирование деталей машиностроения в CAD системах КОМПАС и Solidworks. Часть 1.	4
4	,	Проектирование деталей машиностроения в CAD системах КОМПАС и Solidworks. Часть 2	4
5	3	Создание сборок в CAD системах КОМПАС и Solidworks. Часть 1.	4
6	3	Создание сборок в CAD системах КОМПАС и Solidworks. Часть 2.	4

7	Создание механизмов и расчет их параметров (скоростей, ускорений, перемещений) в КОМПАС 3D на основе деталей и сборок.	4
8	Создание механизмов и расчет их параметров (скоростей, ускорений, перемещений) в КОМПАС 3D на основе деталей и сборок. Часть 2.	4

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Знакомство с интерфейсом программы КОМПАС.	2
2		Основные приемы работы в системе КОМПАС. Восходящее и нисходящее проектирование.	2
3	1	Основные приемы работы в системе Solidworks.	4
4	2	Создание цифровых моделей деталей схвата промышленного робота в программе Компас.	4
5	2	Создание цифровых моделей деталей схвата промышленного робота в программе Solidworks.	4
6	1 1	Создание цифровой модели сборки схвата промышленного робота в программе Компас.	4
7	3	Создание цифровой модели сборки схвата промышленного робота в программе Solidworks.	4
8	4	Создание и расчет кинематики механизма схвата промышленного робота в программе Компас.	4
9	4	Создание и расчет кинематики механизма схвата промышленного робота в программе Solidworks.	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

	Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семест					
отчетов по	Щуров, И. А. Сквозное проектирование в металлообработке на базе CAD/CAM/CAE [Текст] : учеб. пособие / И. А. Щуров ; ЮжУрал. гос. ун-т, Каф. Станки и инструмент ; ЮУрГУ, -Челябинск : Издательский Центр ЮУрГУ , 2010 https://lib.susu.ru/ftd?base=SUSU_METHOD1&key=000436284&dtype=F&etype=.pdf	3					
Подготовка к диф. зачету	Щуров, И. А. Сквозное проектирование в металлообработке на базе CAD/CAM/CAE [Текст]: учеб. пособие / И. А. Щуров; ЮжУрал. гос. ун-т, Каф. Станки и инструмент; ЮУрГУ, -Челябинск: Издательский Центр ЮУрГУ, 2010 https://lib.susu.ru/ftd?base=SUSU_METHOD1&key=000436284&dtype=F&etype=.pdf	3					

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	Компьютерное тестирование по разделам, связанным с выполняемыми практическими работами по разделу «разработка цифровых моделей»	1	20	Отлично: Если правильные ответы на поставленные вопросы составляют: 85-100%, то количество баллов, соответственно, от 17 до 20. Хорошо: Если правильные ответы на поставленные вопросы составляют: 75-84%, то количество баллов, соответственно, от 15 до 16. Удовлетворительно: Если правильные ответы на поставленные вопросы составляют: 60-74%, то количество баллов, соответственно, от 12 до 14. Неудовлетворительно: Если правильные ответы на поставленные вопросы составляют: 0-59%, то количество баллов, соответственно, от 0 до 11.	дифференцированный зачет
2	3	Текущий контроль	Компьютерное тестирование по разделам, связанным с выполняемыми практическими работами по разделу «разработка цифровых моделей»	1	20	Отлично: Если правильные ответы на поставленные вопросы составляют: 85-100%, то количество баллов, соответственно, от 17 до 20. Хорошо: Если правильные ответы на поставленные вопросы составляют: 75-84%, то количество баллов, соответственно, от 15 до 16. Удовлетворительно: Если правильные ответы на поставленные вопросы составляют: 60-74%, то количество баллов, соответственно, от 12 до 14. Неудовлетворительно: Если правильные ответы на поставленные вопросы составляют: 0-59%, то количество баллов, соответственно, от 0 до 11.	дифференцированный зачет

3	3	Текущий контроль	Компьютерное тестирование по разделам, связанным с выполняемыми практическими работами по разделу «сборка цифровых моделей»	1	20	правильные ответы на поставленные вопросы составляют: 60-74%, то количество баллов, соответственно, от 12 до 14. Неудовлетворительно: Если правильные ответы на поставленные вопросы составляют: 0-59%, то количество баллов, соответственно, от 0 до 11.	дифференцированныи зачет
4	3	Проме- жуточная аттестация	Диф. зачет		20	Отлично: Если правильные ответы на поставленные вопросы составляют: 85-100%, то количество баллов, соответственно, от 17 до 20. Хорошо: Если правильные ответы на поставленные вопросы составляют: 75-84%, то количество баллов, соответственно, от 15 до 16. Удовлетворительно: Если правильные ответы на поставленные вопросы составляют: 60-74%, то количество баллов, соответственно, от 12 до 14. Неудовлетворительно: Если правильные ответы на поставленные вопросы составляют: 0-59%, то количество баллов, соответственно, от 0 до 11.	дифференцированныи зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
дифференцированный зачет	тестирования. 1ест состоит из 20 вопросов, позволяющих	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1		№ :N		
УК-2	Знает: - имеет практический опыт использования современных конечноэлементных пакетов для расчетов на прочность; - имеет практический опыт подготовки геометрических моделей для последующего расчета методом конечных элементов в широко распространенных САЕ системах; - имеет практический опыт расчетов на прочность, анализа результатов и формулировки выводов	+		+	-++	1
УК-2	Умеет: применять CAD-системы для проектирования деталей и механизмов машиностроительного назначения	+	+	- +	- +	-
УК-2	Имеет практический опыт: приемами создания цифровых моделей в CAD- системах	+	+	- +	+	

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. СТИН: науч.-техн. журн. / ТОО "СТИН". М., 1935-. -
 - 2. Вестник Южно-Уральского государственного университета.

Серия: Машиностроение / Юж.-Урал. гос. ун-т; ЮУрГУ. - Челябинск : Издательство ЮУрГУ, 2001-. -. URL: http://vestnik.susu.ac.ru/

г) методические указания для студентов по освоению дисциплины:

- 1. 1. Щуров И.А. Твердотельное моделирование с использованием программы Solidworks Текст учеб. пособие И. А. Щуров ; Юж.-Урал. гос. ун-т, Каф. Станки и инструмент ; ЮУрГУ
- 2. 1. Щуров И.А. Твердотельное моделирование с использованием программы Solidworks Текст учеб. пособие И. А. Щуров ; Юж.-Урал. гос. ун-т, Каф. Станки и инструмент ; ЮУрГУ

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. 1. Щуров И.А. Твердотельное моделирование с использованием программы Solidworks Текст учеб. пособие И. А. Щуров ; Юж.-Урал. гос. ун-т, Каф. Станки и инструмент ; ЮУрГУ

Электронная учебно-методическая документация

N	Вил	Наименование ресурса в электронной форме	Библиографическое описание
1	питепатура	Электронный каталог ЮУрГУ	Щуров, И. А. Сквозное проектирование в металлообработке на базе CAD/CAM/CAE [Текст]: учеб. пособие / И. А. Щуров; ЮжУрал. гос Станки и инструмент; ЮУрГУ, -Челябинск: Издательский Центр ЮУр https://lib.susu.ru/ftd?base=SUSU_METHOD1&key=000436284&dtype=F
2	дополнительная	Электронный каталог ЮУрГУ	Дьяконов, А. А. CAD/CAM/CAE/CAPP-системы в машиностроении [То пособие / А. А. Дьяконов, А. Х. Нуркенов; ЮжУрал. гос. ун-т, Каф. Т автоматизир. машиностроения; ЮУрГУ https://lib.susu.ru/ftd?base=SUSU_METHOD&key=000557023&dtype=F&
3	дополнительная	издательства Паш	Жарков, Н. В. Компас-3d. Полное руководство . От новичка до професс руководство / Н. В. Жарков, М. А. Минеев, М. В. Финков. — 2-е изд. — Петербург : Наука и Техника, 2019. — 656 с. — Текст : электронный // . электронно-библиотечная система https://e.lanbook.com/book/139144

Перечень используемого программного обеспечения:

- 1. Dassault Systèmes-SolidWorks Education Edition 500 CAMPUS(бессрочно)
- 2. ASCON-Компас 3D(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
±	202 (1)	Компьютерный класс