ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранитов в системе электронного документооборога (Ожно-Уральского государственного университета СЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Кому выдан: Григорыев М. А. Пользователь: дейостчина 1807 2025

М. А. Григорьев

РАБОЧАЯ ПРОГРАММА

дисциплины 1.O.24 Электрические измерения и датчики обратных связей для направления 15.03.06 Мехатроника и робототехника уровень Бакалавриат форма обучения очная кафедра-разработчик Электропривод, мехатроника и электромеханика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.06 Мехатроника и робототехника, утверждённым приказом Минобрнауки от 17.08.2020 № 1046

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, к.техн.н., доцент

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кульмухаметова А. С. Пользователь: kulmukhametowas Дата подписания: 1807 2025

М. А. Григорьев

А. С. Кульмухаметова

1. Цели и задачи дисциплины

Целью освоения учебной дисциплины «Электрические измерения и датчики обратных связей» является формирование знаний о современных методах и средствах измерений электрических, магнитных и неэлектрических величин, а также принципов работы и применения датчиков обратных связей в технических системах.. Задача дисциплины - освоение подходов к выбору методов и средств измерений для поставленных измерительных задач, освоение принципов построения систем с обратной связью и развитие у студентов навыков работы с измерительными приборами и с датчиками различных типов.

Краткое содержание дисциплины

В курсе данной дисциплины раскрываются: Общие понятия метрологии, термины и определения, погрешности, общая характеристика аналоговых и цифровых электроизмерительных устройств, средства измерения и контроля размеров и перемещений, методы и средства измерений электрических величин, измерение токов и напряжений, измерение мощности и энергии, исследование формы сигналов, измерение частоты и угла сдвига фаз. измерение магнитных величин. В процессе освоения дисциплины практические навыки будут формироваться в форме практических и лабораторных занятий. Вид промежуточной аттестации - зачет.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
Ха (т пі	Знает: Принципы работы и метрологические
	характеристики современных датчиков
	(тензометрических, индуктивных,
	пьезоэлектрических, оптических и др.); методы и
	средства электрических измерений (аналоговые
	и цифровые приборы, измерительные
	преобразователи); стандарты и протоколы
	передачи данных в системах автоматизации
	(HART, 4-20 мA, RS-485, Ethernet); основы
ОПК-2 Способен применять основные метолы	обработки сигналов (фильтрация, усиление,
	аналого-цифровое преобразование)
способы и средства получения, хранения,	Умеет: Выбирать датчики и измерительные цепи
переработки информации при решении задач	для конкретных технологических задач;
профессиональной деятельности	настраивать системы сбора данных с датчиков
	обратной связи; обрабатывать и
	интерпретировать результаты измерений с
	использованием специализированного ПО
	(LabVIEW, MATLAB, SCADA-системы);
	диагностировать и устранять погрешности в
	измерительных каналах
	Имеет практический опыт: Калибровки и
	поверки измерительных приборов; методами
	статистической обработки измерительной
	информации; технологиями интеграции датчиков
	в системы автоматизированного управления.

	Знает: Требования к поверке и калибровке
	средств измерений, Правила оформления
	технической документации, Классификация и
	характеристики измерительных приборов
	Умеет: Анализировать и применять требования
ОПК-5 Способен работать с нормативно-	нормативных документов, Интерпретировать
технической документацией, связанной с	технические условия и стандарты, Проводить
профессиональной деятельностью, с учетом	измерения в соответствии с нормативными
стандартов, норм и правил	требованиями
	Имеет практический опыт: Сравнение
	характеристик приборов с нормативными
	требованиями, Оценка соответствия датчиков
	стандартам, Поиск актуальных нормативных
	документов

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
1.О.20 Метрология, стандартизация и	
п О го начертательная геометрия и инженерная	1.О.31 Автоматизация и роботизация технологических процессов

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования		
1.О.20 Метрология, стандартизация и сертификация	Знает: основные принципы метрологического обеспечения производства, виды и методы контроля качества, требования нормативных документов (ГОСТ, ISO, ТР ТС), порядок проведения сертификации продукции и систем менеджмента качества, Основные метрологические правила, нормы и требования, основы стандартизации и сертификации, виды и назначение основной нормативно-технической документации в области метрологии и измерительной техники Умеет: выбирать средства и методы контроля в зависимости от типа изделия, проводить измерения с заданной точностью, оформлять результаты испытаний, анализировать соответствие продукции установленным требованиям, Использовать нормативные правовые документы, обрабатывать результаты измерений и оценивать погрешности измерений, выбрать средства измерений для решения конкретной задачи в профессиональной деятельности Имеет практический опыт: работы с измерительным оборудованием, методиками статистического контроля качества, технологиями проведения входного и выходного		

	контроля, основами работы в системах
	менеджмента качества, Выявления грубых
	погрешностей в экспериментальных
	исследованиях, а также практического
	применения изучаемых средств измерения
	Знает: Правила оформления конструкторской
	документации в соответствии с ЕСКД, основные
	методы расчетов на долговечность машин и
	конструкций, трение и износ узлов машин,
	Основы проектирования и основные методы
	расчетов на прочность, жесткость, долговечность
	машин и конструкций с помощью применения
	алгоритмов и современных цифровые
	программных методов расчетов Умеет:
	Выполнять и читать чертежи и другую
	конструкторскую документацию, проводить
	расчеты деталей машин и элементов
	конструкций методами прикладной механики,
	конструировать элементы машин и узлов с
	учетом обеспечения прочности, выносливости и
	долговечности, конструировать узлы машин и
	механизмов с учетом износостойкости.,
1.О.19 Детали машин	Проводить расчеты деталей машин и элементов
	конструкций аналитическими и
	вычислительными методами прикладной
	механики, а также с помощью программных
	систем компьютерного инжиниринга. Имеет
	практический опыт: Конструирования типовых
	узлов машин с помощью компьютерной графики,
	навыками расчетов аналитическими методами
	прикладной механики деталей машин и
	элементов конструкций, навыками применения
	математического моделирования механических
	систем, навыками выбора материалов по
	критериям прочности, долговечности,
	износостойкости., Проектирования элементов и
	устройств с использованием методов расчета
	деталей машин и применением современных
	систем компьютерного проектирования (САО-
	систем)
	Знает: Методы проецирования и построение
	изображений геометрических фигур
	технологического оборудования, его деталей и
	узлов с использованием средств автоматизации
	проектирования и в соответствии с техническим
	заданием Умеет: Анализировать форму
10161	предметов в натуре и по их чертежам при
1.О.16 Начертательная геометрия и инженерная	проведении расчётов по типовым методикам и на
графика	основе методов построения изображений
	геометрических фигур проектировать
	технологическое оборудование с использованием
	средств автоматизации проектирования и в
	соответствии с техническим заданием. Имеет
	практический опыт: Решения метрических и
	позиционных задач, методами проецирования и
	изображения пространственных объектов при

	проведении расчётов по типовым методикам; на основе методов построения изображений геометрических фигур проектировать технологическое оборудование с использованием стандартных средств автоматизации проектирования и в соответствии с техническим заданием.
--	---

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 5
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к зачету	9,75	9.75
Подготовка к аудиторным занятиям	10	10
Подготовка отчетов по лабораторным работам	16	16
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в			
<u>№</u> раздела	Наименование разделов дисциплины	часах			
		Всего	Л	П3	ЛР
	Теоретические основы электрических измерений	4	4	0	0
2	Электрические измерения параметров цепей	10	6	0	4
3	Датчики обратных связей	18	6	0	12

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основные понятия, термины и определения. Единицы физических величин. Измерение, его основные операции, элементы процесса. Основные этапы измерений. Классификация измерений.	2
2		Область и виды измерений. Принципы, методы и методики измерений. Шкалы измерений Измерительный сигнал, классификация, квантование,	2

		дискретизация.	
3	2	Измерение электрических величин аналоговыми электромеханическими измерительными приборами: магнитоэлектрический, электромагнитный, электростатический и электродинамические механизмы.	2
4	2	Измерение параметров элементов электрических цепей (измерение сопротивления, электрической емкости и индуктивности). Метод вольтметра-амперметра, электронные омметры, измерительные мосты постоянного и переменного тока, резонансный метод	2
5	2	Измерение силы тока и напряжения электромеханическими приборами. Магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические приборы.	2
6	3	Датчики: понятие, классификация, характеристики, требования. Электромеханические концевые выключатели: характеристики, требования, конструкция. Индуктивные бесконтактные датчики: принцип действия, конструкция, функции. Емкостные бесконтактные датчики: принцип действия, конструкция, типы, факторы влияющие на работу датчиков.	2
7	3	Фотоэлектрические датчики: принцип действия, системы обнаружения, факторы влияющие на работу. Ультразвуковые датчики: принцип действия, режимы работы, факторы влияющие на работу. Методы и средства контроля перемещения и скорости.	2
8	3	Энкодеры: виды и принципы действия, датчики скорости: виды и принципы действия. Датчики температуры. Датчики гидро-пневмостатических величин.	2

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	2	Выполнение лабораторной работы "Датчики тока и напряжения"	2
2	2	Защита лабораторной работы "Датчики тока и напряжения"	2
3	3	Выполнение лабораторной работы "Датчики линейного перемещения."	2
4	3	Защита лабораторной работы "Датчики линейного перемещения."	2
5		Выполнение лабораторной работы "Датчики частоты вращения. Датчики скорости."	2
6	•	Защита лабораторной работы "Датчики частоты вращения. Датчики скорости."	2
7	3	Выполнение лабораторной работы "Датчики углового положения. "	2
8	3	Защита лабораторной работы "Датчики углового положения. "	2

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Подготовка к зачету	Осн. литература [2], стр. 1-479, ЭУМД [2]. стр. 1-132	5	9,75		
Подготовка к аудиторным занятиям	Доп. литература [2] 1- 479; ЭУМД [1].	5	10		

	стр. 1-292		
Подготовка отчетов по лабораторным	Осн. литература [1], стр. 1-926;	5	16
работам	Методические пособия [1]; ПО и БД	3	16

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се-	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	5	Текущий контроль	Лабораторная работа №1	0,25	3	К процедуре защиты лабораторной работы допускаются студенты, которые выполнили лабораторную работу, оформили в соответствии с требованиями отчет о работе и предоставили его к защите. Процедура защиты проходит в форме устного опроса каждого студента. Студенту задается 3 вопроса на тему лабораторной работы. За каждый верный ответ студенту начисляется 1 балл, за каждый неверный 0 баллов. Максимальное количество баллов - 3, проходной балл-2 (Раздел 2)	зачет
2	5	Текущий контроль	Лабораторная работа №2	0,25	3	К процедуре защиты лабораторной работы допускаются студенты, которые выполнили лабораторную работу, оформили в соответствии с требованиями отчет о работе и предоставили его к защите. Процедура защиты проходит в форме устного опроса каждого студента. Студенту задается 3 вопроса на тему лабораторной работы. За каждый верный ответ студенту начисляется 1 балл, за каждый неверный 0 баллов. Максимальное количество баллов - 3, проходной балл-2 (Раздел 2)	зачет
3	5	Текущий контроль	Лабораторная работа №3	0,25	3	К процедуре защиты лабораторной работы допускаются студенты, которые выполнили лабораторную работу, оформили в соответствии с требованиями отчет о работе и предоставили его к защите. Процедура защиты проходит в форме устного опроса каждого студента. Студенту задается 3 вопроса на тему лабораторной работы. За каждый верный ответ студенту начисляется 1 балл, за каждый неверный 0 баллов. Максимальное количество баллов - 3,	зачет

						проходной балл-2 (Раздел 2)	
4	5	Текущий контроль	Лабораторная работа №4	0,25	3	К процедуре защиты лабораторной работы допускаются студенты, которые выполнили лабораторную работу, оформили в соответствии с требованиями отчет о работе и предоставили его к защите. Процедура защиты проходит в форме устного опроса каждого студента. Студенту задается 3 вопроса на тему лабораторной работы. За каждый верный ответ студенту начисляется 1 балл, за каждый неверный 0 баллов. Максимальное количество баллов - 3, проходной балл-2 (Раздел 2)	зачет
5	5	Проме- жуточная аттестация	Зачет	1	3	Студенту задаются 3 теоретических вопроса. Каждый верный ответ оценивается в 1 балл, неверный 0 баллов. Студенту могут быть задан уточняющий вопрос по теме - верный ответ на уточняющий вопрос 0,5 балла. Максимальное количество баллов - 3. (Раздел 1-4)	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	обучающегося по дисциплине Rд на основе рейтинга по	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	N 1 2	<u>6</u> I	ΚΝ 4	1 5
ОПК-2	Знает: Принципы работы и метрологические характеристики современных датчиков (тензометрических, индуктивных, пьезоэлектрических, оптических и др.); методы и средства электрических измерений (аналоговые и цифровые приборы, измерительные преобразователи); стандарты и протоколы передачи данных в системах автоматизации (HART, 4-20 мA, RS-485, Ethernet); основы обработки сигналов (фильтрация, усиление, аналого-цифровое преобразование)		+ +	-	+
ОПК-2	Умеет: Выбирать датчики и измерительные цепи для конкретных	+-	+	+	+

						_
	технологических задач; настраивать системы сбора данных с датчиков обратной связи; обрабатывать и интерпретировать результаты измерений с использованием специализированного ПО (LabVIEW, MATLAB, SCADA-системы); диагностировать и устранять погрешности в измерительных каналах					
ОПК-2	Имеет практический опыт: Калибровки и поверки измерительных приборов; методами статистической обработки измерительной информации; технологиями интеграции датчиков в системы автоматизированного управления.	+	+	+	+	+
ОПК-5	Знает: Требования к поверке и калибровке средств измерений, Правила оформления технической документации, Классификация и характеристики измерительных приборов		+	+		+
ОПК-5	Умеет: Анализировать и применять требования нормативных документов, Интерпретировать технические условия и стандарты, Проводить измерения в соответствии с нормативными требованиями	+	+	+	+	+
ОПК-5	Имеет практический опыт: Сравнение характеристик приборов с нормативными требованиями, Оценка соответствия датчиков стандартам, Поиск актуальных нормативных документов		+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Основы метрологии и электрические измерения Учебник для вузов по специальности "Информ.-измерит. техника" Под ред. Е. М. Душина. 6-е изд., перераб. и доп. Л.: Энергоиздат. Ленинградское отделение, 1987. 479 с. ил.
 - 2. Фрайден, Д. Современные датчики [Текст] справочник Д. Фрайден ; пер. с англ. Ю. А. Заболотной ; под ред. Е. Л. Свинцова. М.: Техносфера, 2006. 588 с. ил.
- б) дополнительная литература:
 - 1. Конюхов, Н. Е. Электромагнитные датчики механических величин Н. Е. Конюхов, Ф. М. Медников, М. Л. Нечаевский. М.: Машиностроение, 1987. 255 с. ил.
 - 2. Джексон Р. Г. Новейшие датчики / Р. Г. Джексон ; пер. с англ. В. В. Лучинина. М. : Техносфера, 2007. 380 с. : ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Промышленные датчики механических величин

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Промышленные датчики механических величин

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

1. Microsoft-Windows(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -Информационные ресурсы ФГУ ФИПС(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
	908 (36)	Учебно-исследовательский стенд "Промышленные датчики механических величин", Учебно-исследовательский стенд "Промышленные датчики технологических величин"
Лекции	815 (3б)	Компьютер, проекционное оборудование