ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Мользователь: штапелькора Цата подписание: 25 05 2025

П. А. Тараненко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.12.01 Деформационные свойства материалов при неупругом циклическом деформировании

для направления 15.04.03 Прикладная механика

уровень Магистратура

магистерская программа Компьютерное моделирование высокотехнологичных конструкций

форма обучения очная

кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 731

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., доцент

Электронный документ, подписанный ПЭП, хрынтев в системе электронного документоборята ПОУРГУ ПОЖНО-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Сому выдан: Порошин В. В. Сому выдан: Порошин В. В. С

П. А. Тараненко

В. Б. Порошин

1. Цели и задачи дисциплины

Цель: Знание теоретических основ и закономерностей поведения металлических конструкционных материалов при повторно-переменном, в том числе, циклическом, неупругом термомеханическом нагружениии. Задачи: Владение классическими и прогрессивными математическими моделями для описания деформационных свойств металлических конструкционных материалов при повторно-переменном (циклическом) неупругом термомеханическом нагружениии. Умение применять эти модели и соответствующие процедуры реализации, в том числе, численные методы для расчета напряженно-деформированного состояния элементов конструкций и деталей машин в названных условиях.

Краткое содержание дисциплины

Анализ традиционных теорий и математических моделей для описания деформирования металлических конструкционных материалов при повторно-переменном, в том числе, циклическом, неупругом термомеханическом нагружениии. Понятие структурной модели упруго-вязко-пластической среды в варианте Гохфельда-Садакова и вытекающий из нее Обобщенный принцип подобия (ОПП). Описание на основе ОПП процессов неупругого деформирования в жестком и мягком цикле при нормальной и повышенной температуре на основе моделей упруго-пластической, вязко-упругой и упруго-вязко-пластической сред.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
Планируемые результаты освоения ОП ВО (компетенции) ПК-1 Способность выявлять сущность научнотехнических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их решения соответствующий физикоматематический аппарат, вычислительные методы и компьютерные технологии, а также экспериментальные методы исследований	1 2 2
	прикладных программ для оценки напряженно-
	деформированного состояния элементов конструкций с учетом ползучести при
	монотонном и циклическом нагружении
ПК-3 Способен для решения профессиональных	Знает: современные подходы, в том числе,
задач осваивать и применять современные	математические модели, к анализу напряженно-

теории, физико-математические и	деформированного состояния конструкционных
вычислительные методы, а также новые системы	материалов за пределами упругости с учетом
компьютерного проектирования и	вязкой составляющей в условиях монотонного и
компьютерного инжиниринга (CAD/CAE-	циклического нагружения при нормальной и
системы)	повышенной температуре
	Умеет: применять в профессиональной
	деятельности современные теории, физико-
	математические и численные методы
	исследования закономерностей деформирования
	металлических конструкционных материалов,
	элементов конструкций в условиях монотонного
	и циклического нагружения
	Имеет практический опыт: расчетов и навыки
	использования пакетов прикладных программ, а
	также новых систем компьютерного
	проектирования и компьютерного инжиниринга
	для оценки прочности и жесткости элементов
	конструкций

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,	
видов работ учебного плана	видов работ	
	Численное моделирование разрушения,	
	Компьютерное моделирование в Ansys	
Mayayyyya waxiyaayiiyy yy yaranya han	Workbench,	
Механика композитных материалов, Мониторинг состояния конструкций	Расчетно-экспериментальное моделирование	
	динамики машин,	
	Производственная практика (преддипломная) (4	
	семестр)	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

рассмотрения неоднородностей структуры и свойств Умеет: уметь выявлять сущность научнотехнических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их решения соответствующий физикоматематический аппарат, применять современные коммуникативные технологии, понимать технические тексты на иностранном языке, применять физико-математический аппарат, вычислительные методы и компьютерные технологии в профессиональной деятельности для описания свойств композитных материалов и конструкций, применять методы математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций; оценивать эффективность и результативность выбранных методов методов Имеет практический опыт: подготовки доклада на заданную тему и презентации; восприятия видео по тематике курса на иностранном языке; чтения технических текстов на иностранном языке, применения физико-математического аппарата, методов математического и компьютерного моделирования для разработки компьютерной модели композитного материала, использования методов математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций

Мониторинг состояния конструкций

Знает: методы и средства технического диагностирования как средства повышения экономичности и надежности конструкции в процессе проектирования и эксплуатации, методы технической диагностики, особенности оценки технического состояния диагностируемых систем, алгоритмы и техническое обеспечение систем диагностики, современные автоматизированные системы технической диагностики объектов Умеет: пользоваться методикой оценки остаточного ресурса оборудования и поиска неисправностей на основе данных мониторинга; формулировать задачу и способ ее решения, оценивать эффективность автоматизированных системам технической диагностики в общей структуре АСУ ТП, пользоваться методами и средствами технической диагностики для проведения научно-исследовательских, расчетных и экспериментальных работ по динамике, прочности и надежности машин и приборов. Имеет практический опыт: по выбору метода и средств мониторинга состояния объекта; выбор диагностических параметров и критериев работоспособности, использования современных

средств измерений, программных продуктов, предназначенных для обеспечения работы в реальном времени систем сбора, обработки, отображения и архивирования информации об объекте мониторинга, использования новых современных методов и средств проведения диагностики объектов в области прикладной
механики и обобщать результаты мониторинга

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 2
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к зачету	12,75	12.75
Подготовка и самостоятельное решение задач, связанных с анализом неупругого деформирования с помощью обобщенного принципа подобия	23	23
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
раздела			Л	ПЗ	ЛР	
1 1	лассические теории и математические модели пластичности и олзучести		2	4	0	
2	Структурные модели неупругих сред. Особенности структурной модели в варианте Гохфельда-Садакова		4	2	0	
	Обобщенный принцип подобия как частный случай структурной модели Гохфельда-Садакова	16	8	8	0	
4	Применение обобщенного принципа подобия для описания кинетики повреждаемости при циклическом неупругом деформировании с выдержками	4	2	2	0	

5.1. Лекции

No	$N_{\underline{o}}$	Наименование или краткое содержание лекционного занятия	Кол-	
лекции	раздела		во	

			часов
1	1	Анализ адекватности классических теорий и математических моделей пластичности и ползучести применительно к повторно-переменному неупругому деформированию с выдержками	2
2, 3	2	Особенности структурных моделей неупругих сред. Структурная модель упруговязкопластической среды в варианте Гохфельда-Садакова	4
4, 5	3	Связь внутренних параметров состояния структурной модели с макропараметрами состояния среды. Обобщенный принцип подобия как модель структурной модели. Правила "памяти" среды о предыстории нагружения	4
6, 7	3	Модели упругопластической, вязкоупругой и упруговязкопластической сред для описания напраженно-деформированного состояния при изотермическом и неизотермическом циклическом неупругом деформировании с выдержками	4
8	4	Использование макропараметров состояния при формулировании кинетической модели накопления усталостного повреждения	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1, 2		Применение классических теорий и математических моделей пластичности и ползучести к расчету напряженно-деформированного состояния при повторно-переменном неупругом деформировании с выдержками	4
3		Получение определяющих функций конкретного материала (диаграммы деформирования и реологической функции) структурной модели в варианте Гохфельда-Садакова	2
4, 5	3	Уравнения состояния в функции макроскопических параметров, определяющие обобщенный принцип подобия. Правила запоминания и забывания поворотных моментов предыстории. Варианты моделей различных сред упругопластической, вязкоупругой и упруговязкопластической	4
6, 7		Применение обобщенного принципа подобия в варианте моделей упругопластической, вязкоупругой и упруговязкопластической среды для описания напряженно-деформированного состояния при изотермическом и неизотермическом циклическом неупругом деформировании с выдержками. Естественные ограничения каждой из этих моделей	4
8	4	Применение кинетической модели накопления усталостного повреждения для оценки долговечности элементов теплонапряженных конструкций	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС			
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к зачету	Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов,	2	12,75

	К.М. Кононов и др. – Екатерин-бург: Издво УрО РАН, 1996. с. 147–237		
Подготовка и самостоятельное решение задач, связанных с анализом неупругого деформирования с помощью обобщенного принципа подобия	1. Гохфельд, Д. А. Пластичность и ползучесть элементов конструкций при повторных нагружениях М.: Машиностроение, 1984 256 с. 2. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. — Екатерин-бург: Издво УрО РАН, 1996. — 409 с.	2	23

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	2	Текущий контроль	Задача 1. Получение определяющих функций заданного материала (диаграммы деформирования и реологической функции)	0,1	5	5 баллов - определяющие функции получены верно; 4 балла - определяющие функции получены с незначительными ошибками; 3 балла - определяющие функции получены с непринципиальными ошибками; 0 баллов - определяющие функции получены неверно	зачет
2	2	Текущий контроль	Задача 2. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью обобщенного принципа подобия (ОПП) на основе модели упругопластической среды		5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с непринципиальными ошибками; 0 баллов - диаграмма деформирования построена неверно	зачет
3	2	Текущий контроль	Задача 3. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью ОПП на основе модели вязкоупругой среды	0,2	5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с	зачет

						непринципиальными ошибками; 0 баллов - диаграмма деформирования построена неверно	
4	2	Текущий контроль	Задача 4. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью ОПП на основе модели вязкоупругопластической среды	0,2	5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с непринципиальными ошибками; 0 баллов - диаграмма деформирования построена неверно	зачет
5	2	Проме- жуточная аттестация	Зачет	-	5	Критерий получения зачета Зачтено - в результате ответов на вопросы набрано не менее 65 % норматива. Не зачтено - в результате ответов на вопросы набрано менее 65 % норматива	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	на вопросы по задачам 1-4, так и на вопросы из перечня	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения			№ KM	
	Знает: основные эффекты, методы и испытательное оборудование для их экспериментального изучения, а также существующие математические модели теории пластичности и ползучести, применимые в условиях монотонного и циклического нагружения при нормальной и повышенной температуре				+
ПК-1	Умеет: проводить экспериментальные исследования и применять математические модели деформирования неупругого материала для анализа напряженно-деформированного состояния элементов конструкций в условиях монотонного и циклического нагружения при нормальной и повышенной температуре				+
	Имеет практический опыт: проведения экспериментальных исследований и расчетов, а также навыки использования пакетов прикладных программ для оценки напряженно-деформированного состояния элементов конструкций с				+

	учетом ползучести при монотонном и циклическом нагружении				
ПК-3	Знает: современные подходы, в том числе, математические модели, к анализу напряженно-деформированного состояния конструкционных материалов за пределами упругости с учетом вязкой составляющей в условиях монотонного и циклического нагружения при нормальной и повышенной температуре	+-	+-	++	-+
ПК-3	Умеет: применять в профессиональной деятельности современные теории, физико-математические и численные методы исследования закономерностей деформирования металлических конструкционных материалов, элементов конструкций в условиях монотонного и циклического нагружения	+-	+-	+-+	-+
ПК-3	Имеет практический опыт: расчетов и навыки использования пакетов прикладных программ, а также новых систем компьютерного проектирования и компьютерного инжиниринга для оценки прочности и жесткости элементов конструкций	+-	+-	++	-+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Гохфельд, Д. А. Несущая способность конструкций при повторных нагружениях Редкол. сер.: С. Д. Пономарев (пред.) и др. М.: Машиностроение, 1979. 263 с. ил.
 - 2. Гохфельд, Д. А. Пластичность и ползучесть элементов конструкций при повторных нагружениях. М.: Машиностроение, 1984. 256 с. ил.
- б) дополнительная литература:
 - 1. Малинин, Н. Н. Прикладная теория пластичности и ползучести Учеб. для студентов вузов Н. Н. Малинин. 2-е изд., перераб. и доп. М.: Машиностроение, 1975. 400 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Порошин В.Б., Чернявский А.О. Современные подходы к анализу и численному решению задач пластичности и ползучести при однократном и переменном нагружении: учебник Москва, Вологда: Инфра-Инженерия., 2024. 116 с.
 - 2. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. Екатеринбург: Изд-во УрО РАН, 1996. 409 с.
- из них: учебно-методическое обеспечение самостоятельной работы студента:
 - 1. Порошин В.Б., Чернявский А.О. Современные подходы к анализу и численному решению задач пластичности и ползучести при однократном и переменном нагружении: учебник Москва, Вологда: Инфра-Инженерия., 2024. 116 с.

2. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. – Екатеринбург: Изд-во УрО РАН, 1996. – 409 с.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. PTC-MathCAD(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары		Основное оборудование, компьютер с предустановленным программным обеспечением, проектор
Самостоятельная работа студента		Основное оборудование, компьютеры с предустановленным программным обеспечением
Лекции		Основное оборудование, компьютер с предустановленным программным обеспечением, проектор