ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОжно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranenkopa Пат подписание: 2 05 2025

П. А. Тараненко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.12.02 Реологические свойства материалов при циклическом деформировании

для направления 15.04.03 Прикладная механика

уровень Магистратура

магистерская программа Компьютерное моделирование высокотехнологичных конструкций

форма обучения очная

кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 731

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., доцент

Электронный документ, подписанный ПЭЦ, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП мур выдан: Порошин В. Б. одвозователь: рогозлітую та подписания: 2 5 25 62 2025

П. А. Тараненко

В. Б. Порошин

1. Цели и задачи дисциплины

Цель: Знание теоретических основ и закономерностей поведения металлических конструкционных материалов при повторно-переменном, в том числе, циклическом, неупругом термомеханическом нагружениии. Задачи: Владение классическими и прогрессивными математическими моделями для описания деформационных свойств металлических конструкционных материалов при повторно-переменном (циклическом) неупругом термомеханическом нагружениии. Умение применять эти модели и соответствующие процедуры реализации, в том числе, численные методы для расчета напряженно-деформированного состояния элементов конструкций и деталей машин в названных условиях.

Краткое содержание дисциплины

Анализ традиционных теорий и математических моделей для описания деформирования металлических конструкционных материалов при повторно-переменном, в том числе, циклическом, неупругом термомеханическом нагружениии. Понятие структурной модели упруго-вязко-пластической среды в варианте Гохфельда-Садакова и вытекающий из нее Обобщенный принцип подобия (ОПП). Описание на основе ОПП процессов неупругого деформирования в жестком и мягком цикле при нормальной и повышенной температуре на основе моделей упруго-пластической, вязко-упругой и упруго-вязко-пластической сред.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: основные эффекты, методы и
	испытательное оборудование для их
	экспериментального изучения, а также
	существующие математические модели
	реологии, применимые в условиях монотонного
	и циклического нагружения при нормальной и
	повышенной температуре
	Умеет: проводить экспериментальные
ПК-1 Способность выявлять сущность научно-	исследования и применять математические
технических проблем, возникающих в ходе	модели деформирования склерономного и
профессиональной деятельности, и привлекать	реономного материала для анализа напряженно-
для их решения соответствующий физико-	деформированного состояния элементов
математический аппарат, вычислительные	конструкций в условиях монотонного и
методы и компьютерные технологии, а также	циклического нагружения при нормальной и
экспериментальные методы исследований	повышенной температуре
	Имеет практический опыт: проведения
	экспериментальных исследований и расчетов, а
	также навыки использования пакетов
	прикладных программ для оценки напряженно-
	деформированного состояния элементов
	конструкций с учетом реологических свойств
	материала при монотонном и циклическом
	нагружении
ПК-3 Способен для решения профессиональных	Знает: особенности циклического

	деформирования неупругих материалов Умеет: применять в профессиональной
вычислительные методы, а также новые системы	
компьютерного проектирования и	закономерностей циклического деформирования
компьютерного инжиниринга (CAD/CAE-	неупругих материалов
системы)	Имеет практический опыт: оценки прочности и
	жесткости конструкций при малоцикловом
	деформировании

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
видов работ учестого плана	видов расот
	Численное моделирование разрушения,
	Компьютерное моделирование в Ansys
Маханика кампаантин у матариа нар	Workbench,
ІМОНИТОРИНГ СОСТОЯНИЯ КОНСТРУКЦИИ	Расчетно-экспериментальное моделирование
	динамики машин,
	Производственная практика (преддипломная) (4
	семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования			
	Знает: методы и средства технического			
	диагностирования как средства повышения			
	экономичности и надежности конструкции в			
	процессе проектирования и эксплуатации,			
	методы технической диагностики, особенности			
	оценки технического состояния			
	диагностируемых систем, алгоритмы и			
	техническое обеспечение систем диагностики,			
	современные автоматизированные системы			
	технической диагностики объектов Умеет:			
	пользоваться методикой оценки остаточного			
	ресурса оборудования и поиска неисправностей			
	на основе данных мониторинга; формулировать			
Мониторинг состояния конструкций	задачу и способ ее решения, оценивать			
	эффективность автоматизированных системам			
	технической диагностики в общей структуре			
	АСУ ТП, пользоваться методами и средствами			
	технической диагностики для проведения			
	научно-исследовательских, расчетных и			
	экспериментальных работ по динамике,			
	прочности и надежности машин и приборов.			
	Имеет практический опыт: по выбору метода и			
	средств мониторинга состояния объекта; выбор			
	диагностических параметров и критериев работоспособности, использования современных			
	средств измерений, программных продуктов,			
	предназначенных для обеспечения работы в			
	предназначенных для обеспечения работы в реальном времени систем сбора, обработки,			
	реальном времени систем соора, оораоотки,			

отображения и архивирования информации об объекте мониторинга, использования новых современных методов и средств проведения диагностики объектов в области прикладной механики и обобщать результаты мониторинга Знает: вычислительные методы и компьютерные технологии для решения научно-технических проблем, возникающих в ходе профессиональной деятельности, современные коммуникативные технологии; основные принципы подготовки доклада и презентации, общие принципы и методы математического компьютерного моделирования в области композитных материалов и конструкций; современные технологии производства композитных материалов и конструкций; методы испытаний композитов, особенности структуры и свойств композитных материалов по сравнению с традиционными конструкционными материалами; современные методы математического моделирования в области использования композитных материалов и конструкций на микро-, мезо- и макроуровне рассмотрения неоднородностей структуры и свойств Умеет: уметь выявлять сущность научнотехнических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их решения соответствующий физикоматематический аппарат, применять современные коммуникативные технологии, Механика композитных материалов понимать технические тексты на иностранном языке, применять физико-математический аппарат, вычислительные методы и компьютерные технологии в профессиональной деятельности для описания свойств композитных материалов и конструкций, применять методы математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций; оценивать эффективность и результативность выбранных методов методов Имеет практический опыт: подготовки доклада на заданную тему и презентации; восприятия видео по тематике курса на иностранном языке; чтения технических текстов на иностранном языке, применения физико-математического аппарата, методов математического и компьютерного моделирования для разработки компьютерной модели композитного материала, использования методов математического и компьютерного моделирования в теоретических и расчетноэкспериментальных исследованиях композитных материалов и конструкций

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 2
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к зачету	12,75	12.75
Подготовка и самостоятельное решение задач, связанных с анализом неупругого деформирования с помощью обобщенного принципа подобия	23	23
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
раздела			Л	ПЗ	ЛР	
	Классические теории и математические модели пластичности и ползучести	6	2	4	0	
	Структурные модели неупругих сред. Особенности структурной модели в варианте Гохфельда-Садакова	6	4	2	0	
4	Обобщенный принцип подобия как частный случай структурной модели Гохфельда-Садакова	16	8	8	0	
4	Применение обобщенного принципа подобия для описания кинетики повреждаемости при циклическом неупругом деформировании с выдержками	4	2	2	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Анализ адекватности классических теорий и математических моделей пластичности и ползучести применительно к повторно-переменному неупругому деформированию с выдержками	2
2, 3	/.	Особенности структурных моделей неупругих сред. Структурная модель упруговязкопластической среды в варианте Гохфельда-Садакова	4
4, 5	3	Связь внутренних параметров состояния структурной модели с макропараметрами состояния среды. Обобщенный принцип подобия как модель структурной модели. Правила "памяти" среды о предыстории нагружения	4

6, 7	3	Модели упругопластической, вязкоупругой и упруговязкопластической сред для описания напраженно-деформированного состояния при изотермическом и неизотермическом циклическом неупругом деформировании с выдержками	4
8	1 4	Использование макропараметров состояния при формулировании кинетической модели накопления усталостного повреждения	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1, 2	1	Применение классических теорий и математических моделей пластичности и ползучести к расчету напряженно-деформированного состояния при повторно-переменном неупругом деформировании с выдержками	4
3		Получение определяющих функций конкретного материала (диаграммы деформирования и реологической функции) структурной модели в варианте Гохфельда-Садакова	2
4, 5	3	Уравнения состояния в функции макроскопических параметров, определяющие обобщенный принцип подобия. Правила запоминания и забывания поворотных моментов предыстории. Варианты моделей различных сред упругопластической, вязкоупругой и упруговязкопластической	4
6, 7	3	Применение обобщенного принципа подобия в варианте моделей упругопластической, вязкоупругой и упруговязкопластической среды для описания напряженно-деформированного состояния при изотермическом и неизотермическом циклическом неупругом деформировании с выдержками. Естественные ограничения каждой из этих моделей	4
8	4	Применение кинетической модели накопления усталостного повреждения для оценки долговечности элементов теплонапряженных конструкций	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Подготовка к зачету	Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. – Екатерин-бург: Издво УрО РАН, 1996. с. 147–237	2	12,75		
Подготовка и самостоятельное решение задач, связанных с анализом неупругого деформирования с помощью обобщенного принципа подобия	1. Гохфельд, Д. А. Пластичность и ползучесть элементов конструкций при повторных нагружениях М.: Машиностроение, 1984 256 с. 2. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. — Екатерин-бург: Издво УрО РАН, 1996. — 409 с.	2	23		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	2	Текущий контроль	Задача 1. Получение определяющих функций заданного материала (диаграммы деформирования и реологической функции)	0,1	5	5 баллов - определяющие функции получены верно; 4 балла - определяющие функции получены с незначительными ошибками; 3 балла - определяющие функции получены с непринципиальными ошибками; 0 баллов - определяющие функции получены неверно	зачет
2	2	Текущий контроль	Задача 2. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью обобщенного принципа подобия (ОПП) на основе модели упругопластической среды	0,1	5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с непринципиальными ошибками; 0 баллов - диаграмма деформирования построена неверно	зачет
3	2	Текущий контроль	Задача 3. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью ОПП на основе модели вязкоупругой среды		5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с непринципиальными ошибками; 0 баллов - диаграмма деформирования построена неверно	зачет
4	2	Текущий контроль	Задача 4. Построение диаграммы циклического деформирования (петли неупругого гистерезиса) с помощью ОПП на основе модели вязкоупругопластической среды	0,2	5	5 баллов - диаграмма деформирования построена верно; 4 балла - диаграмма деформирования построена с незначительными ошибками; 3 балла - диаграмма деформирования построена с непринципиальными ошибками;	зачет

						0 баллов - диаграмма деформирования построена неверно	
5	2	Проме- жуточная аттестация	Зачет	-	5	Критерий получения зачета Зачтено - в результате ответов на вопросы набрано не менее 65 % норматива. Не зачтено - в результате ответов на вопросы набрано менее 65 % норматива	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	на вопросы по задачам 1-4, так и на вопросы из перечня	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ KM 12345		5
ПК-1	Знает: основные эффекты, методы и испытательное оборудование для их экспериментального изучения, а также существующие математические модели реологии, применимые в условиях монотонного и циклического нагружения при нормальной и повышенной температуре				
ПК-1	Умеет: проводить экспериментальные исследования и применять математические модели деформирования склерономного и реономного материала для анализа напряженно-деформированного состояния элементов конструкций в условиях монотонного и циклического нагружения при нормальной и повышенной температуре				
ПК-1	Имеет практический опыт: проведения экспериментальных исследований и расчетов, а также навыки использования пакетов прикладных программ для оценки напряженно-деформированного состояния элементов конструкций с учетом реологических свойств материала при монотонном и циклическом нагружении	+			
ПК-3	Знает: особенности циклического деформирования неупругих материалов		+	+	
ПК-3	Умеет: применять в профессиональной деятельности методы исследования закономерностей циклического деформирования неупругих материалов		+	+	
ПК-3	Имеет практический опыт: оценки прочности и жесткости конструкций при малоцикловом деформировании		+	+	

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Гохфельд, Д. А. Несущая способность конструкций при повторных нагружениях Редкол. сер.: С. Д. Пономарев (пред.) и др. М.: Машиностроение, 1979. 263 с. ил.
 - 2. Гохфельд, Д. А. Пластичность и ползучесть элементов конструкций при повторных нагружениях. М.: Машиностроение, 1984. 256 с. ил.
- б) дополнительная литература:
 - 1. Малинин, Н. Н. Прикладная теория пластичности и ползучести Учеб. для студентов вузов Н. Н. Малинин. 2-е изд., перераб. и доп. М.: Машиностроение, 1975. 400 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. Екатеринбург: Изд-во УрО РАН, 1996. 409 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Механические свойства сталей и сплавов при нестационарном нагружении: справочник / Д.А. Гохфельд, Л.Б. Гецов, К.М. Кононов и др. – Екатеринбург: Изд-во УрО РАН, 1996. – 409 с.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. PTC-MathCAD(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	319	Основное оборудование, компьютер с предустановленным

	(2)	программным обеспечением, проектор
Самостоятельная	334	Основное оборудование, компьютеры с предустановленным
работа студента	(2)	программным обеспечением
Практические занятия	319	Основное оборудование, компьютер с предустановленным
и семинары	(2)	программным обеспечением, проектор