ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Декан факультета Филиал г. Миасс

И. В. Войнов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П1.11.01 Электромеханические системы для направления 27.03.04 Управление в технических системах уровень Бакалавриат профиль подготовки Управление и информатика в технических системах форма обучения очная кафедра-разработчик Автоматика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 27.03.04 Управление в технических системах, утверждённым приказом Минобрнауки от 31.07.2020 № 871

Зав.кафедрой разработчика, к.техн.н., доц.

электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОУРГУ СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Совлователье, goloshchapovsя Цата подписания: 02 02 2022

С. С. Голощапов

Разработчик программы, д.физ.-мат.н., проф., профессор

Эвектронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Телетин А. И. Пользователь: teleginai [для подписания 02 02 2022

А. И. Телегин

СОГЛАСОВАНО

Руководитель образовательной программы к.техн.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе эмектронного документоборога (ОХРГУ)

СВЕДЕНИЯ О ВПАДЕЛЬЦЕ ПЭП

Кому выдан: Голошапов С. С. Пользователь: golosichapovs Цата подписание. О 02 2022

С. С. Голощапов

1. Цели и задачи дисциплины

Цель преподавания дисциплины "Электромеханические системы" – ознакомлении студентов с новейшими принципами и дальнейшим развитием автоматики и автоматизации технологических процессов, в том числе в области машиностроения, в обеспечении целостного понимания студентами базовых категорий и принципов электромеханических систем (ЭМС), формировании информационной и методологической базы для изучения последующих дисциплин, связанных с ЭМС и робототехникой, в приобретении первейших практических навыков анализа и синтеза объектов типа ЭМС. Задачами дисциплины "Электромеханические системы" являются: – ознакомление с базовыми понятиями, историей становления и ключевыми факторами развития ЭМС и робототехники; – изучение принципов построения современных систем автоматического управления и регулирования на основе ЭМС; – изучение современного состояния в области теории и практики разработки ЭМС; – изучение принципов действия основных элементов и составляющих модулей ЭМС; – изучение модульного принципа построения ЭМС; – изучение современных принципов и интеллектуальных методов управления объектами ЭМС; – изучение областей эффективного применения ЭМС.

Краткое содержание дисциплины

В дисциплине "Электромеханические системы" рассматриваются темы: Электропривод, Компоновка электропривода ЭМС, Формальное описание ЭМС, ЗД-моделирование ЭМС, Математическое моделирование ЭМС, Синтез ПИД-регулятора программных движений ЭМС, Имитационное моделирование ЭМС.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-2 Способен производить расчеты и проектирование отдельных блоков и устройств систем автоматизации и управления и выбирать стандартные средства автоматики, измерительной и вычислительной техники для проектирования систем автоматизации и управления в соответствии с техническим заданием	Знает: аналитические и численные методы для анализа математических моделей электромеханических систем с использованием компьютерной техники; методы расчета электромеханических систем Умеет: составлять таблицы параметров электромеханических систем; выводить уравнения динамики электромеханических систем Имеет практический опыт: имитационного моделирования технических систем
ПК-6 Способен принимать участие в модернизации существующих и внедрении новых способов и методов построения систем управления	Знает: способы формального описания электромеханических систем Умеет: выбирать исполнительные механизмы и схему управления при различных режимах работы систем
ПК-12 Способен выполнять экспериментальные исследования на действующих объектах автоматизации и управления и обрабатывать результаты с применением информационных	Знает: основные технические характеристики электромеханических систем и методы их экспериментального исследования Умеет: проводить исследования и синтез
технологий	механических систем с применением

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Цифровая схемотехника, Математические основы теории систем, Введение в направление, Основы микроэлектроники, Переходные процессы в режимах коммутации, Микропроцессоры, микроконтроллеры и вычислительная техника, Системное программное обеспечение, Производственная практика, проектная практика (6 семестр)	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: современные физико-математические
	методы, применяемые в инженерной и
	исследовательской практике; методы и
	алгоритмы планирования измерений и
	испытаний, обработку их результатов и оценку
	их качества, основные программные средства
	реализации оптимизационных процессов,
	тенденции использования математических
	методов в управлении Умеет: формировать
	планы измерений и испытаний для различных
Математические основы теории систем	измерительных и экспериментальных задач,
тутатемати-ческие основы теории систем	обрабатывать полученные результаты с
	использованием алгоритмов, адекватных
	сформированным планам, применять
	современные математические пакеты программ
	для математического описания, моделирования и
	анализа сигналов и систем Имеет практический
	опыт: применения физико-математических
	методов при исследовании математических
	моделей, моделирования процессов управления
	объектами, применения математических методов
	для решения различных задач управления
	Знает: принцип работы и основные
	характеристики и параметры элементов и
	компонентов электронных и микроэлектронных
	устройств, основные принципы выбора
Основы микроэлектроники	элементной базы для расчета и проектирования
Основы микроэлектроники	систем и средств автоматики, программы
	компьютерного моделирования элементов и
	компонентов электроники с целью оценки их
	основных характеристик и работоспособности
	Умеет: выполнять расчеты базовых электронных

	устройств, осуществлять сбор и анализ исходных
	данных по основным техническим
	характеристикам электронных и
	микроэлектронных элементов и компонентов,
	выполнять моделирование электронных схем с
	использованием компьютерных программ Имеет
	практический опыт: исследования характеристик
	и параметров изделий электронной техники,
	составления технических отчетов по результатам
	исследований
	Знает: Законы переходных процессов в режимах
	коммутации электронных средств автоматики и
	методы их расчета Умеет: проводить
	исследования переходных процессов и
Переходные процессы в режимах коммутации	анализировать результаты экспериментов,
	производить расчеты переходных процессов в
	отдельных блоках систем управления Имеет
	практический опыт: оформления технических
	отчетов по результатам экспериментов
	Знает: программные интерфейсы контроля и
	мониторинга за состоянием аппаратных
	компонент систем автоматизации и управления;
	особенности реализации сетевых технологий,
	организацию операционной системы, модели
	работы ее отдельных подсистем, способы
	организации взаимодействия процессов как в
Системное программное обеспечение	пределах одной вычислительной системы, так и
perference inperparameter course fermio	в распределенных системах; современные
	стандарты информационного взаимодействия
	систем Умеет: использовать системное
	программное обеспечение в сервисно-
	эксплуатационной деятельности, применять
	системное программное обеспечение Имеет
	практический опыт: отладки программного
	обеспечения
	Знает: методы математического моделирования и
	прикладное программное обеспечение для
	разработки цифровых электронных модулей,
	основы синтеза структуры и расчета цифровых
	устройств комбинационного и
	последовательностного типов; функциональный
	синтез цифровых устройств. Умеет:
Цифровая схемотехника	интегрировать цифровые устройства в
' ' '	существующие системы управления и/или
	измерения Имеет практический опыт:
	применения средств моделирования на этапе
	проектирования цифровых электронных модулей
	систем управления, синтеза и анализа цифровых
	устройств с использованием современных
	пакетов специализированного программного
	обеспечения
	Знает: основы синтеза структуры, расчета и
Микропроцессоры, микроконтроллеры и	проектирования программного обеспечения для
вычислительная техника	устройств на базе микропроцессоров и
	микроконтроллеров, методы математического
	моделирования и прикладное программное

	1
	обеспечение для разработки и отладки
	аппаратного и программного обеспечения,
	государственные и отраслевые стандарты
	(ЕСКД, ЕСПД); принципы формирования
	эксплуатационной документации (руководства,
	методики, регламенты); Умеет: разрабатывать
	устройства и модули автоматизации на основе
	микропроцессоров и микроконтроллерова,
	разрабатывать инструкции по эксплуатации
	устройств; методики тестирования программного
	обеспечения Имеет практический опыт:
	применения средств моделирования на этапе
	проектирования модулей систем управления
	Знает: Виды стандартов. Основные требования
	ЕСКД по оформлению технической
	документации. Требования стандартов
	университета по оформлению документации.,
	Принцип построения устройств систем
	автоматизации и управления, основной
	элементный базис технических систем, средства
	измерительной техники в системах автоматики и
	управления, сущность и необходимость тайм-
	менеджмента. Основные техники и технологии
	управления временем. Эффективное время
75	биологических циклов жизнедеятельности.
Введение в направление	"Ловушки времени", источники информации,
	необходимой для профессиональной
	деятельности Умеет: оформлять текстовые
	документы с применением компьютерных
	программ с учетом требований стандартов
	университета, применять информационные
	технологии планирования временем
	(планировщики). Анализировать эффективность
	временных затрат для успешной деятельности,
	осуществлять поиск и анализ информации в сети
	Internet для решения поставленных задач Имеет
	практический опыт:
	Знает: порядок разработки, согласования и
	принятия АСУ; порядок разработки,
	оформления, утверждения и внедрения
	технических документов Умеет: использовать
	прикладные компьютерные программы для
	разработки технологических схем обработки
	информации и оформления моделей данных
	АСУ; создавать несложные рисунки для
Проморомограммод этом-	оформления технических документов с
Производственная практика, проектная практика	использованием компьютерных программ для
(6 семестр)	работы с графической информацией, применять
	правила выполнения текстовых и графических
	документов, входящих в состав проектной
	документации Имеет практический опыт: выбора
	стандартных средств автоматики, измерительной
	и вычислительной техники для проектирования
	систем автоматизации и управления, поиска
	информации, необходимой для составления
	технического задания на создание АСУ, с
	поли поского заданил на создание лез, с

использованием информационно-
телекоммуникационной сети «Интернет»,
справочной и рекламной литературы

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч., 123,75 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам в часах			
Вид у коноп расоты	часов	Номер семестра			
		7	8		
Общая трудоёмкость дисциплины	216	108	108		
Аудиторные занятия:	108	48	60		
Лекции (Л)	40	16	24		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	40	16	24		
Лабораторные работы (ЛР)	28	16	12		
Самостоятельная работа (СРС)	92,25	53,75	38,5		
с применением дистанционных образовательных технологий	0				
Подготовка к зачету	20	20	0		
Выполнение практических заданий (ПЗ)	28	22	6		
Подготовка к экзамену	10	0	10		
Выполнение и защита курсового проекта	14,5	0	14.5		
Выполнение лабораторных работ (ЛР)	19,75	11.75	8		
Консультации и промежуточная аттестация	15,75	6,25	9,5		
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет	экзамен,КП		

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	•		Л	ПЗ	ЛР
	Основные понятия и определения электромеханических систем. Классификация ЭМС. Электропривод	10	2	4	4
2	Компоновка электропривода ЭМС	10	2	4	4
3	Формальное описание ЭМС	12	4	4	4
4	3Д-моделирование ЭМС	18	6	8	4
5	Математическое моделирование ЭМС	22	10	8	4
6	Синтез ПИД-регулятора программных движений ЭМС	20	8	8	4
7	Имитационное моделирование ЭМС	16	8	4	4

5.1. Лекции

No	№	Наименование или краткое содержание лекционного занятия	
лекции	раздела		
1	1	Электропривод	2

2	2	Схемы размещения электропривода	2
3	3	Структурные и кинематические схемы ЭМС	2
4	3	Табличное описание ЭМС	2
5	4	Моделирование структуры ЭМС	2
6	4	Моделирование несущих конструкций	2
7	4	Анимация программных движений	2
8	5	Математическое моделирование электропривода	2
9	5	Уравнения кинематики	2
10	5	Уравнения статики	2
11	5	уравнения динамики	4
12	6	Общий вид уравнений динамики ЭМС	2
13	6	Формализм Тимофеева	2
14	6	Синтез программных движений ЭМС	2
15	6	Синтез адаптивного ПИД-регулятора программных движений ЭМС	2
16	7	Моделирование робокара	2
17	7	Моделирование манипулятора с цилиндрической системой координат	2
18	7	Моделирование манипулятора с сферической системой координат	4

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Коллекторный и вентильный электропривод. Линейный электропривод. Линейный актуатор. Электропривод прямого действия.	4
2	2	Схемы компановок электропривода на базовом и смежном теле поступательной и вращательной кинематической пары	4
3	3	Вектор структурных параметров. Кинематические схемы ЭМС. Таблицы параметров ЭМС	4
4	4	Разметка 3Д-моделей манипуляторов и робокаров.	4
8	4	Изучение программной системы SYSTEL.	4
5	5	Формализм выписывания уравнений кинематики.	4
9	5	Формализм выписывания уравнений статики и динамики ЭМС	4
6	6	Приведение уравнений динамики ЭМС к векторно-матричному виду и запись формул вычисления управляющих воздействий по формализму Тимофеева.	4
10	6	Приведение уравнений динамики ЭМС к векторно-матричному виду.	4
7		Моделирование программных движений электромеханических манипуляторов с декартовой, цилиндрической, сферической и ангулярной системой координат.	4

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1		Исследование электродвигателя постоянного тока с независимым возбуждением. Исследование линейного электропривода.	4
2		Изучение конструкций компановки электропривода манипулятора Кобра и UR10.	4
3	3	Составление таблиц входных параметров ЭМС в среде программной	4

		системы СистемаТел.	
4	4	3Д-моделирование робокаров и манипуляторов в программной системе СистемаТел.	4
5	5	Математическое моделирование ЭМС в системе аналитических вычислений Maxima.	4
6	6	Вывод формул вычисления управляющих воздействий по формализму Тимофеева в системе Maxima.	4
7	7	Имитационное моделирование программных движений ЭМС в системе Maxima.	4

5.4. Самостоятельная работа студента

F	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к зачету	Тюков, В. А. Электромеханические системы: учебное пособие / В. А. Тюков. — Новосибирск: НГТУ, 2015. — 92 с. — ISBN 978-5-7782-2756-9. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/118093 (дата обращения: 01.02.2022). — Режим доступа: для авториз. пользователей.	7	20
Выполнение практических заданий (ПЗ)	Математическое моделирование электромеханических систем: методические указания к лабораторнопрактическим занятиям / Составитель: Д.А. Курносов Челябинск: Изд. центр ЮУрГУ, 2010 18 с.	7	22
Подготовка к экзамену	Тюков, В. А. Электромеханические системы: учебное пособие / В. А. Тюков. — Новосибирск: НГТУ, 2015. — 92 с. — ISBN 978-5-7782-2756-9. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/118093 (дата обращения: 01.02.2022). — Режим доступа: для авториз. пользователей.	8	10
Выполнение и защита курсового проекта	Телегин, А. И. Уравнения механики систем абсолютно твердых тел: учебное пособие / А. И. Телегин, А. В. Абросов Челябинск: Изд-во ЮУрГУ, 2003 80 с.	8	14,5
Выполнение лабораторных работ (ЛР)	Системы твердых тел. Математическое обеспечение решения задач механики и управления. / Телегин А.И ЧГТУ, 1995 373 с.	8	8
Выполнение лабораторных работ (ЛР)	Системы твердых тел. Математическое обеспечение решения задач механики и управления. / Телегин А.И ЧГТУ, 1995 373 с.	7	11,75
Выполнение практических заданий (ПЗ)	Системы твердых тел. Математическое обеспечение решения задач механики и	8	6

\\ \frac{1}{2}	272 2		
----------------	-------	--	--

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	7	Проме- жуточная аттестация	зачет	-	4	Каждый правильный ответ из 4 разделов оценивается в 1 балл.	зачет
2	8	Проме- жуточная аттестация	экзамен	-	10	Билет содержит два вопроса. Правильный ответ на вопрос, уверенное, грамотное изложение, приведены поясняющие рисунки, схемы, диаграммы и т.п. графический и математический поясняющий материал, соответствует 5 баллам. Правильный ответ, неуверенное изложение, приведен частично поясняющий графический и математический материал — 4 балла; Частично правильный ответ, приведен необходимый графический и математический поясняющий материал частично -3 балла. Частично правильный ответ на вопрос, неуверенное изложение, отсутствие поясняющего материала соответствует 2 баллам. Не правильный ответ, минимальное количество поясняющего материала — 1 балл. Ответ не правильный, нет поясняющего материала — 0 баллов. Максимальное количество баллов — 10.	экзамен
3	8	Курсовая работа/проект	Курсовой проект	-	9	Показатели оценивания по трем составляющим: Правильность расчетов, грамотное и правильное оформление пояснительной записки, правильное оформление чертежей и схем, уверенная защита и ответы на вопросы — Расчеты: З балла — полное соответствие техническому заданию, правильные расчеты, работоспособность во всех режимах 2 балла — полное соответствие заданию, работоспособность в подавляющем	кур- совые проекты

						большинстве режимов, ошибки в расчетах; 1 балл — не полное соответствие заданию, работоспособность только в части режимов, имеются недочеты в расчетах 0 баллов — не соответствие заданию, неработоспособность или работоспособность или работоспособность только в малой части режимов, грубые ошибки в расчетах Графический материал или программы: 3 — все схемы (чертежи) выполнены в соответствие с выполненными расчетами и требованиями ЕСКД 2 — на схемах (чертежах) имеются не значительные ошибки в прорисовке,	
						схема (чертеж) соответствует выполненным расчетам; 1- схема (чертеж) выполнены в соответствие с расчетами, но имеют существенные ошибки в прорисовке. 0 — схема (чертеж) не соответствует расчетам, выполнены с грубыми нарушениями стандартов ЕСКД по пририсовке схем и перечня элементов. Защита курсовой работы: 3 балла — при защите студент показывает глубокое знание вопросов темы, свободно оперирует данными исследования, вносит обоснованные предложения, легко отвечает на поставленные вопросы 2 балла — при защите студент показывает знание вопросов темы, оперирует данными исследования, вносит предложения по теме исследования, без особых затруднений отвечает на поставленные вопросы 1 балл — при защите студент проявляет неуверенность, показывает слабое знание вопросов темы, не всегда дает исчерпывающие аргументированные ответы на заданные вопросы 0 баллов — при защите студент затрудняется отвечать на поставленные вопросы 0 баллов — при защите студент затрудняется отвечать на поставленные вопросы по ее теме, не знает теории	
						вопроса, при ответе допускает существенные ошибки Максимальное количество баллов – 9. Работа выполнена - 1 балл, представлен	
4	7	Текущий контроль	Лабораторная работа №1	1	3	отчет - 1 балл, ответил на вопросы - 1 балл. Максимальный - 3 балла.	зачет
5	7	Текущий контроль	Домашнее задание №1	1	5	Каждая правильно описанная модель оценивается в 1 балл.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	ответы отводится 0,5 часа. При оценивании результатов	В соответствии с пп. 2.5, 2.6 Положения
зачет	, , , ,	
курсовые проекты	Защита курсового проекта осуществляется публично перед комиссией, назначаемой кафедрой. Студент представляет все материалы, делает доклад и отвечает на вопросы. Защита курсовой работы: 3 балла — при защите студент показывает глубокое знание вопросов темы, свободно оперирует данными исследования, вносит обоснованные предложения, легко отвечает на поставленные вопросы 2 балла — при защите студент показывает знание вопросов темы, оперирует данными исследования, вносит предложения по теме исследования, без особых затруднений отвечает на поставленные вопросы 1 балл — при защите студент проявляет неуверенность, показывает слабое знание вопросов темы, не всегда дает исчерпывающие аргументированные ответы на заданные вопросы 0 баллов — при защите студент затрудняется отвечать на поставленные вопросы по ее теме, не знает теории вопроса, при ответе допускает существенные ошибки. Время на защиту - 15 минут.	В соответствии с п. 2.7 Положения

6.3. Оценочные материалы

TC	D. C				M	Ī
Компетенции	Результаты обучения	1	2	3	45	
	Знает: аналитические и численные методы для анализа математических моделей электромеханических систем с использованием компьютерной техники; методы расчета электромеханических систем	+	+	+		
ПК-2	Умеет: составлять таблицы параметров электромеханических систем; выводить уравнения динамики электромеханических систем	+	+	+	++	-
11K-Z	Имеет практический опыт: имитационного моделирования технических систем	+	+	+		Ī
ПК-6	Знает: способы формального описания электромеханических систем	+	+	+	++]
ПК-6	Умеет: выбирать исполнительные механизмы и схему управления при различных режимах работы систем		+	+		
ПК-12	Знает: основные технические характеристики электромеханических систем и методы их экспериментального исследования	+	+	+		

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Копылов, И. П. Электрические машины : учебник для вузов / И. П. Копылов. М. : Высшая школа, 2002. 607 с.
 - 2. Аветисян, Д. А. Автоматизация проектирования электротехнических систем и устройств [Текст] : учебное пособие / Д. А. Аветисян. М. : Высшая школа, 2005. 511 с.
- б) дополнительная литература:
 - 1. Телегин, А. И. Уравнения механики систем абсолютно твердых тел : учебное пособие / А. И. Телегин, А. В. Абросов. Челябинск : Изд-во ЮУрГУ, 2003. 80 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Системы твердых тел. Математическое обеспечение решения задач механики и управления. / Телегин А.И. ЧГТУ, 1995. 373 с.
 - 2. Математическое моделирование электромеханических систем: методические указания к лабораторно-практическим занятиям / Составитель: Д.А. Курносов. Челябинск: Изд. центр ЮУрГУ, 2010. 18 с.
- из них: учебно-методическое обеспечение самостоятельной работы студента:
 - 1. Системы твердых тел. Математическое обеспечение решения задач механики и управления. / Телегин А.И. ЧГТУ, 1995. 373 с.
 - 2. Математическое моделирование электромеханических систем: методические указания к лабораторно-практическим занятиям / Составитель: Д.А. Курносов. Челябинск: Изд. центр ЮУрГУ, 2010. 18 с.

Электронная учебно-методическая документация

Ŋº	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства	Щербинин, С.В. Методика проектирования электромехатронных систем движения [Электронный ресурс]: учебно-методическое пособие. — Электрон. дан. — М.: ТУСУР (Томский государственный университет систем управления и радиоэлектроники), 2012. — 45 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=10855
2	Основная	Электронно-	Тюков, В. А. Электромеханические системы: учебное пособие

	литература	издательства Лань	/ В. А. Тюков. — Новосибирск : НГТУ, 2015. — 92 с. — ISBN 978-5-7782-2756-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/118093 (дата обращения: 01.02.2022). — Режим доступа: для авториз. пользователей.
3	Дополнительная литература	оиолиотечная система издательства	Электромеханические системы: учебное пособие / составители И. А. Данилушкин [и др.]. — 2-е изд. — Самара: АСИ СамГТУ, 2015. — 127 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/127613 (дата обращения: 01.02.2022). — Режим доступа: для авториз. пользователей.

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Math Works-MATLAB, Simulink 2013b(бессрочно)
- 3. Microsoft-Office(бессрочно)
- 4. ФГАОУ ВО "ЮУрГУ (НИУ)"-Портал "Электронный ЮУрГУ" (https://edu.susu.ru)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия		1. Манипулятор "Кобра ". 2. Универсальный робот UR10 (2 шт.). 3. Электромеханический робокар (2 шт.).
и семинары	` ′	электромеханический робокар (2 шт.).
Лекции	205 (5)	Мультимедийный проектор
Самостоятельная работа студента	313 (5)	Компьютеры с установленным ПО и выходом в интернет
Лабораторные занятия	315 (5)	Компьютеры с установленным ПО и выходом в интернет