ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооброго Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Загребныя С. А. Пользовятель: zagrebnasa 10.17.2025

С. А. Загребина

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.05 Современные компьютерные технологии для направления 01.04.05 Статистика уровень Магистратура форма обучения очная кафедра-разработчик Прикладная математика и программирование

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.04.05 Статистика, утверждённым приказом Минобрнауки от 14.08.2020 № 1030

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, старший преподаватель

А. А. Замышляева

А. В. Лут

1. Цели и задачи дисциплины

Цели дисциплины: формирование теоретических основ и практических навыков разработки оригинальных, современных методов и алгоритмов с последующим их использованием для анализа, обработки данных и других задач профессиональной деятельности путем использования языков программирования Python, C++, C#, Java, Assembly и SQL с учетом требований информационной безопасности. Задачи: - систематизированное изучение студентами основ использования современных компьютерных технологий для задач прикладной области; - рассмотрение методов и средств получения, хранения и переработки информации; - ознакомление с этапами разработки ПО и требованиями выдвигаемыми к системам; - приобретение новых знаний путем применения компьютерных технологий анализа данных и машинного обучения; - изучение библиотек языков, использующиеся при решении профессиональных задач; - формирование практических навыков разработки оригинальных алгоритмов, программного обеспечения, анализа программного кода, выявления и исправления в нем ошибок.

Краткое содержание дисциплины

Исследование истории становления современных компьютерных технологий; изучение современных языков программирования, таких как Python, C++, C#, Assembly и SQL; применение полученных знаний программирования для решения профессиональных задач; исследование эффективности для выбора наиболее применимого алгоритма для решения задачи; изучение безопасности в разработке ПО.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
этапах его жизненного шикпа	Знает: современные компьютерные методы реализации проекта в рамках обозначенной проблемы
статистического анализа доклады, презентации с применением соответствующих методов визуализации	Знает: современные методы визуализации результатов статистических исследований Умеет: применять современные методы визуализации для создания докладов и презентации

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
видов расот учестого плана	1
Нет	1.О.02 История и методология математики и статистики, 1.Ф.01 Приложение эконометрики в технике и экономике, ФД.03 Математические методы искусственного интеллекта и экспертные системы,
	ФД.01 Разработка мобильных приложений,

ФД.02 Алгоритмы компьютерного зрения, Производственная практика (научно-
исследовательская работа) (3 семестр), Учебная практика (ознакомительная) (2 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 38,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 1
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	32	32
Лекции (Л)	0	0
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	32	32
Самостоятельная работа (СРС)	69,75	69,75
Подготовка к зачету	20	20
Решение задач и подготовка к лабораторным работам	49,75	49.75
Консультации и промежуточная аттестация	6,25	6,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
раздела			Л	ПЗ	ЛР	
1	Исследование становления современных компьютерные 1 технологий. Архитектура и принцип работы современных вычислительных машин			0	4	
/.	Современные высокоуровневые языки программирования в решении актуальных задач	24	0	0	24	
1 3	Современные низкоуровневые языки программирования в решении актуальных задач	4	0	0	4	

5.1. Лекции

Не предусмотрены

5.2. Практические занятия, семинары

5.3. Лабораторные работы

№	№	Наименование или краткое солеруание набораторной работи	Кол-во
занятия	раздела	Наименование или краткое содержание лабораторной работы	
1,2	1	Изучение основ Assembly	4
3,4	2	Основы Python	4
5,6	2	Машинное обучение в Python	4
7,8	2	Компьютерное зрение в Python	
9,10	2	Консольное приложение на С++	4
11,12	2	Консольное приложение на Java	4
13,14	2	Forms на C#	
15,16	3	Применение языка Assembly в прикладных задачах	4

5.4. Самостоятельная работа студента

Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Подготовка к зачету	Учмет. мат. в эл. виде: № 1 стр. 1-272, № 2 стр. 1-1042, № 3 стр. 1-272, № 4 стр. 1-82, № 5 стр. 1-148	1	20			
	Учмет. мат. в эл. виде: № 1 стр. 1-272, № 2 стр. 1-1042, № 3 стр. 1-272, № 4 стр. 1-82		49,75			

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	1	Текущий контроль	Активность на занятии	10	100	Баллы начисляются за отношение посещенных занятий ко всем возможным (в процентном значении). Дополнительно можно повысить балл, не превышая максимального, на 5 за каждый правильный ответ на дополнительный вопрос преподавателя или выход к доске во время занятий. Итого: максимально 100 баллов.	зачет
2	1	Текущий	Основы Python	10	5	Критерии оценки задания:	зачет

		контроль				- 1 балл за каждое правильно решенное	
		nem pemb				задание;	
						- 0.5 балла за частичное решение;	
						- 0 баллов за отсутствие ответа или неправильное решение.	
						Итого: максимально 5 баллов.	
						Критерии оценки задания:	
						- проведен разведочный анализ и	
						первичная обработка данных - 2 балла;	
						- с применением алгоритмов машинного	
						обучения, построена серия регрессионных моделей (или моделей классификации) по	
						обучающей выборке и по всем метрикам	
						регрессии (или классификации) оценена	
						работоспособность моделей на тестовой	
						выборке - 1 балл;	
	1	Текущий	Машинное	20	_	- построены графики результатов	
3	1	контроль	обучение в Python	20	5	прогнозирования регрессионных моделей на тестовой выборке (два графика с	зачет
			1 yulon			отмеченными данными). Если решается	
						задача классификации, то построена	
						матрица невязки (Confusion Matrix) - 1	
						балл;	
						- сделан вывод о точности построенных моделей: по графикам, по метрикам, и по	
						интерпретируемости, а также, сделано	
						выступление с полученным результатом - 1	
						балл.	
						Итого: максимально 5 баллов.	
						Критерии оценки задания: - собрано более 100 изображений с	
						выбранным объектом - 1 балл;	
						- проведена разметка всех объектов на	
						изображениях + сгенерированы различные	
						виды аугментации изображений - 1 балл;	
4	1	Текущий	Компьютерное	10	5	- обучена модель YOLOv5 (или поздняя версия) и приведены результаты ее	зачет
'	1	контроль	зрение в Python	10		обучения (опционально: проведен подбор	34 101
						оптимальных параметров) - 1 балл;	
						- применена модель SAHI для улучшения	
						качества детектирования - 1 балл;	
						- сделан вывод и доклад о всех полученных результатах - 1 балл.	
						Итого: максимально 5 баллов.	
						Критерии оценки задания:	
			Консольное			- 1 балл за каждое правильное решение;	
5	1	Текущий	приложение на	10	2	- 0.5 балла за каждое частичное решение;	зачет
		контроль	Java и С++			- 0 баллов за отсутствие ответов или неправильные решения.	
						неправильные решения. Итого: максимально 2 балла.	
						Критерии оценки задания:	
						- разработана и реализована иерархия	
6	1	Текущий	Forms на С#	15	5	классов из обязательной части - 1 балл;	зачет
		контроль				- придуманы логичные поля и методы, которые будут использоваться для	
						дальнейшего функционирования классов -	
ш			I	<u> </u>		Marie Marie Al Intelliging Control Marie Con	

						1 балл; - реализованы для каждого класса конструктор\ы и тем самым создано необходимое количество объектов для дальнейших тестов - 1 балл; - приведена перегрузка не менее 6 операций для разных классов - 1 балл; - при реализации использовано взаимодействие не менее 3-х форм - 1 балл. Итого: максимально 5 баллов.	
7	1	Текущий контроль	Основы Assembly	10	5	Критерии оценки задания - работа оформлена - 1 балл; - часть 1: написан код на С++ (не менее 10 строк) и дано его описание работы - 1 балл; - часть 1: код на С++ переписан на Assembly и дано описание всех строчек кода - 1 балл; - часть 2: решена полностью задача - 2 балла (неполностью или с ошибками - 1 балл). Итого: максимально 5 баллов.	зачет
8	1	Текущий контроль	Применение Assembly	15	5	Критерии оценки задания - работа оформлена - 1 балл; - часть 1: написан код на С++ или С# или Java содержащий 2 пароля (не менее 20 строчек кода) - 1 балл; - часть 2: с помощью brute-force атаки подобрать 1-й пароль - 2 балла; - часть 3: с помощью реверс-инжиниринга (декомпиляции) получить 2-й пароль - 2 балла. Итого: максимально 5 баллов.	зачет
9	1	Проме- жуточная аттестация	Ответ по билету	1	3	Критерии оценки: - если вопрос раскрыт полностью - 1 балл; - если вопрос раскрыт, но не полностью - 0.5 балла; - если вопрос не раскрыт - 0 баллов. Итого: максимально 3 балла.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	I Выполнено не в течение семестра. Пюоюе залание стулента	В соответствии с пп. 2.5, 2.6

смешанной форме - письменно-устной. Студенту выдается билет, содержащий 3 вопроса (2 теоретических, 1 практический). На подготовку выделяется 1 час, после чего	
студент сдает работу в письменном виде. Затем проводится	
собеседование.	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1	2	Ť		KN 5 6	_	89
IVK = /	Знает: современные компьютерные методы реализации проекта в рамках обозначенной проблемы	+	+	+	+	+	+	+ +
()) K -4	Знает: современные методы визуализации результатов статистических исследований	+	+	+	+	+	+	+ +
K/HK-4	Умеет: применять современные методы визуализации для создания докладов и презентации	+	+	+	+	+	+	++

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Assembly Примеры программ
 - 2. Assembly Вводная информация

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Assembly Примеры программ
- 2. Assembly Вводная информация

Электронная учебно-методическая документация

N	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	ЭБС издательства Лань	Тюкачев Н.А., Хлебостроев В.Г. С#. Основы программирования: Учебное пособие для СПО // Издательство "Лань" (СПО), 2025 272 с. https://e.lanbook.com/book/452021
2	Основная литература		Лакос Дж., Ромео В., Хлебников Р., Мередит А. Современный С++ безопасное использование //

			Издательство "ДМК Пресс", 2023 1042 с. https://e.lanbook.com/book/455285	
3	Основная литература	ЭБС издательства Лань Кочетыгов А.А. Основы программирования на языке Руthon: учебное пособие // Тульский государственный университет, 2024 272 с. https://e.lanbook.com/book/427310		
4	Основная литература	ЭБС издательства Лань	Штеренберг С.И., Красов А.В., Радынская В.Е. Ассемблер в задачах защиты информации: учебное пособие // Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, 2019 82 с. https://e.lanbook.com/book/180080	
5	'	ЭБС издательства Лань	Карабцев С.Н. Современные компьютерные технологии. Геометрическое моделирование в SALOME. Часть 1: учебное пособие / Кемеровский государственный университет, 2020 148 c. https://e.lanbook.com/book/141558	

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. -MinIDE (сборка из SciTE, MinGW C/C++, GDB)(бессрочно)
- 3. PostgreSQL Team-PostgreSQL(бессрочно)
- 4. Microsoft-Visual Studio(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия	333 (36)	Компьютерная аудитория с проектором и выходом в локальную сеть и интернет. Предустановленное ПО: Visual Studio, Postgre SQL, minIDE, Office
Зачет 333 (36		Компьютерная аудитория с проектором и выходом в локальную сеть и интернет. Предустановленное ПО: Visual Studio, Postgre SQL, minIDE, Office