ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Институт естественных и точных наук

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборога (ЮУРГУ Обласного государственного увиверентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышанева А. А. Пользователь: zmysylliaevana [дата подписание 23 от 1292]

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.21 Теоретическая механика для направления 03.03.01 Прикладные математика и физика уровень Бакалавриат форма обучения очная кафедра-разработчик Оптоинформатика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 03.03.01 Прикладные математика и физика, утверждённым приказом Минобрнауки от 07.08.2020 № 890

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доцент

СОГЛАСОВАНО

Руководитель направления д.физ.-мат.н., проф.

Н. Д. Кундикова

Ю. В. Мухин

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога КОУРГУ (Ожно-Уральского государственного университета СЕВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кунцикова Н. Д. Пользователь: kundikovand

Н. Д. Кундикова

1. Цели и задачи дисциплины

Цель изучения дисциплины — подготовка бакалавра по специальности «Прикладные математика и физика», область профессиональной деятельностикоторого включает исследовательскую, инновационную, производственно-технологическую и организационно-управленческую деятельность в различных областях науки, техники и народного хозяйства, использующую подходы, модели и методы математики, физики и других естественных наук. Задачами курса являются изучение основных законов и явлений равновесия и движения механических систем и их применение для конкретных механических систем; овладение навыками использования методов аналитической механики, для описания механических систем, демонстрация преемственности гамильтоновых методов классической и квантовой механики, развитие навыков логического и творческого мышления, необходимых при решении научных задач. Аналитическая механика является первой главой теоретической физики. Развиваемые в этом курсе методы и идеи оказываются базисными для всех остальных разделов теоретической физики.

Краткое содержание дисциплины

Кинематика материальной точки. Основные понятия и общие теоремы динамики системы материальных точек. Обобщенные координаты и обобщенные силы. Уравнение Лагранжа второго рода. Обобщенные силы, импульс и энергия. Циклические координаты. Интегралы движения. Интегральные вариационные принципы аналитической механики. Характеристики одномерного движения. Задача двух тел, законы Кеплера. Теория колебаний. Нормальные колебания для систем с несколькими степенями свободы. Уравнения Гамильтона. Первые интегралы уравнений Гамильтона. Скобки Пуассона. Фазовое пространство гамильтоновых систем. Теорема Лиувилля. Канонические преобразования. Производящие функции канонических преобразований. Уравнение Гамильтона-Якоби. Аналогия с волновой функцией квантовой механики.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ОПК-1 Способен применять фундаментальные знания, полученные в области физикоматематических и (или) естественных наук, и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности	Знает: основные положения классической механики Ньютона, связь законов сохранения механики с симметрией пространства и времени, основные понятия механики Гамильтона. Умеет: использовать методы механики Ньютона и Гамильтона для анализа и расчетов динамики процессов в механических системах, использовать оптико-механическую аналогию для анализа квантовомеханических систем Имеет практический опыт: построения качественных и количественных механических моделей объектов и процессов в естественнонаучной сфере деятельности

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
11.0.12 Математический анализ,	1.О.24 Статистическая физика, 1.О.23 Квантовая механика, 1.О.22 Теория поля

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.12 Математический анализ	Знает: основные свойства пределов последовательности и функций действительного переменного, производной, дифференциала, неопределенного интеграла; свойства функций, непрерывных на отрезке; основные "замечательные пределы", табличные формулы для производных и неопределенных интегралов, формулы дифференцирования, основные разложения элементарных функций по формуле Тейлора; Умеет: записывать высказывания при помощи логических символов; вычислять пределы последовательностей и функций действительного переменного; вычислять производные элементарных функции, раскладывать элементарные функции по формуле Тейлора; применять формулу Тейлора к нахождению главной степенной части при вычислении пределов функций; Имеет практический опыт: навыков владения предметного языка классического математического анализа, применяемого при построении теории пределов, дифференциального и интегрального исчисления для решения различных задач, возникающих в физике, технике, экономике и других прикладных дисциплинах, аппаратом дифференциального исчисления функций многих переменных, а также аппаратом интегрального исчисления для решения различных задач, возникающих в физике, технике, экономике и других
1.О.14 Линейная алгебра и аналитическая геометрия	прикладных дисциплинах; Знает: основные понятия линейной алгебры: матрицы, системы линейных уравнений, линейные пространства, линейные операторы, и основные свойства этих понятий. Умеет: решать системы линейных уравнений, выполнять действия над матрицами и квадратичными формами. Имеет практический опыт: построения линейных моделей объектов и процессов в виде матричных соотношений, систем линейных уравнений, линейных пространств и линейных операторов

методов исследования; экспериментальные методы и средства для анализа и решения задач механики., фундаментальные понятия, законы и теории механики; основные физические эксперименты, повлиявшие на развитие механики. Умеет: производить численные оценки по порядку величины; использовать возможности методов физических исследований для решения физических задач механики; делать правильные выводы из сопоставления результатов теории и эксперимента; анализировать, систематизировать и оценивать результаты оптических экспериментов; обобщать 1.О.06 Общая физика. Механика имеющиеся материалы., формулировать физические законы, анализировать их важность, актуальность, сферы применения; использовать физические законы и теории на практике, решать задачи по данному разделу общей физики. Имеет практический опыт: владеет навыками грамотной обработки результатов лабораторных экспериментов и сопоставления их с теоретическими данными; обобщения и критической оценки результатов экспериментальных исследований., самостоятельно приобретать новые знания по механике; сопоставления результатов

Знает: теоретические основы физических

лабораторных экспериментов по механике с их

теоретическими данными.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч., 110,75 ч. контактной работы

Вид учебной работы		Распределение по семестрам в часах		
,,,, , ,	часов	Номер семестра		
		3	4	
Общая трудоёмкость дисциплины	216	108	108	
Аудиторные занятия:	96	48	48	
Лекции (Л)	32	16	16	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	64	32	32	
Лабораторные работы (ЛР)	0	0	0	
Самостоятельная работа (СРС)	105,25	53,75	51,5	
с применением дистанционных образовательных технологий	0			
Самоподготовка к лекциям	16	0	16	
Самоподготовка к лекциям	16	16	0	
Подготовка к зачету	16,75	16.75	0	
Выполнение домашних заданий и подготовка к	15	0	15	

контрфольным работам			
Подготовка к экзамену	20,5	0	20.5
Выполнение домашних заданий и подготовка к контрфольным работам	21	21	0
Консультации и промежуточная аттестация	14,75	6,25	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	диф.зачет	экзамен

5. Содержание дисциплины

No	Наименование разделов дисциплины	_	торных занятий ам в часах		
раздела	Ludonica Ludonica Vicada	Всего Л ПЗ		ЛР	
1	Кинематика и динамика системы материальных точек	10	4	6	0
2	Связи, число степеней свободы, обобобщенные координаты	4	2	2	0
3	Уравнения Лагранжа	10	4	6	0
4	Одномерное движение. Движение в центральном поле.	14	4	10	0
5	Свободные, вынужденные и затухающие колебания. Связанные колебания многчастичных систем	16	4	12	0
6	Уравнения Гамильтона, скобки Пуассона	20	6	14	0
7	Канонические преобразования. Уравнение Гамильтона-Якоби	22	8	14	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Кинематика материальной точки. Основные понятия и законы динамики. Силы в механике. Законы Ньютона. Принцип относительности Галилея. Решение уравнений движения, начальные условия.	2
2	1	Общие теоремы динамики системы материальных точек. Понятие центра масс системы. Законы изменения импульса, момента импульса материальной системы.	2
3	2	Основная задача динамики несвободной системы и понятие о связях. Действительные, возможные и виртуальные перемещения. Идеальные связи. Уравнение Даламбера-Лагранжа. Обобщенные координаты и обобщенные силы.	2
4	3	Уравнение Лагранжа второго рода. Обобщенные импульс и энергия. Циклические координаты.	2
5	3	Вариационные принципы теоретической механики.	2
6		Одномерное движение.Точки поворота.Финитное и инфинитное движение.Период финитного движения.	2
7	4	Общие свойства движения материальной точки в поле центральной силы. Задача двух тел. Кеплерово движение. Упругое рассеяние частиц в центральном поле.	2
8	3	Уравнение одномерного осциллятора. Задача о малых колебаниях в одномерном случае. Примеры малых колебаний. Уравнение осциллятора с затуханием, его общее решение. Вынужденные колебания. Резонанс. Понятие добротности колебательной системы.	2
9		Линейные колебания консервативной системы с несколькими степенями свободы. Нахождение собственных частот и нормальных колебаний	2
10	6	Уравнения Гамильтона. Фазовое пространство гамильтоновых систем.	2
11	6	Теорема Лиувилля. Вариационный принцип Гамильтона.	2

12	6	Скобки Пуассона и их свойства	2
13	7	Канонические преобразования. Производящие функции канонических преобразований.	2
14	7	Условие каноничности преобразования через скобки Пуассона. Инфинитезимальные канонические преобразования. Теорема Нетер.	2
15	7	Уравнение Гамильтона-Якоби. Переменные «действие-угол».	2
16	7	Оптико-механическая аналогия. Квантовая механика и уравнение Шредингера.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Кинематика точки. Динамика точки. Теорема об изменении количества движения. Закон сохранения импульса. Потенциальные силы. Интеграл энергии.	2
2	1	Теорема об изменении импульса системы. Теорема о движении центра масс механической системы. Теорема об изменении момента импульса. Закон сохранения момента импульса. Применение законов сохранения для решения задач динамики механической системы.	2
3	1	Принцип виртуальных перемещенийдля механической системы с идеальными, стационарными, голономными, удерживающими связями. Определение уравновешивающих сил и статических реакций связей.	2
4	2	Число степеней свободы системы. Обобщенные координаты.	2
5	3	Уравнения Лагранжа. Функция Лагранжа свободной матеральной точки в декартовых и криволинейных координатах.	2
6	3	Применение уравнений Лагранжа для для исследования динамики механической системы с одной и двумя степенями свободы.	2
7	3	Контрольная работа по разделам 1, 2 и 3.	2
8	4	Движение в центральном поле. Момент импульса.	2
9	4	Движение в центральном поле. Центр инерции. Задача двух тел.	2
10	4	Упругое рассеяние частиц на неподвижном центре.	2
11	4	Формула Резерфорда. Рассеяние под малыми углами.	2
12	4	Законы Кеплера. Движение в кеплеровом центральном поле.	2
13	5	Свободные колебания консервативной механической системы с одной степенью свободы около положения равновесия. Свободные колебания с затуханием. Декремент затухания. Добротность колебательной системы.	2
14	5	Вынужденные колебания механической системы с одной степенью свободы. Резонанс.	2
15	5	Вынужденные колебания при наличии трения. Параметрический резонанс.	2
16	5	Ангармонические колебания. Движение в быстро осциллирующем поле.	2
17	5	Линейные колебания консервативной системы с несколькими степенями свободы. Собственные частоты. Нормальные координаты.	2
18	5	Контрольная работа по разделам 4 и 5	2
19	6	Функция Гамильтона. Канонические уравнения Гамильтона в декартовых и в криволинейных координатах.	2
20	6	Уравнения Гамильтона. Фазовое пространство гамильтоновых систем.	2
21	6	Teopeма Лиувилля. Вариационный принцип Гамильтона.	2
22	6	Функция Рауса.	2
23	6	Действие как функция координат. Принцип Мопертюи.	2

24	6	Скобки Пуассона, их свойства. Канонические скобки Пуассона, вычисление скобок Пуассона.	2
25	6	Применение скобки Пуассона для нахождения новых интегралов движения.	2
26	7	Канонические преобразования. Производящие функции канонических преобразований.	2
27	7	Условие каноничности преобразования через скобки Пуассона. Критерии каноничности преобразования. Инфинитезимальные канонические преобразования.	2
28	7	Теорема Эммы Нетер.	2
29	7	Уравнение Гамильтона-Якоби.	2
30	7	Разделение переменных.	2
31	7	Адиабатические инварианты. Канонические переменные.	2
32	7	Контрольная работа по разделам 6 и 7	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Самоподготовка к лекциям	Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил.	4	16
Самоподготовка к лекциям	Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил.	3	16
Подготовка к зачету	Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил. Котова, Л. И. Теоретическая механика Метод. указания и контр. задания для студзаочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и др.; Под ред. С. М. Тарга 4-е изд М.: Высшая школа, 1989 111 с. ил. Диевский, В.А. Теоретическая механика. Интернет-тестирование базовых знаний.	3	16,75

	[Электронный ресурс] / В.А. Диевский, А.В. Диевский. — Электрон. дан. — СПб. : Лань, 2010. — 144 с. — Режим доступа: http://e.lanbook.com/book/128 — Загл. с экрана. Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил. Котова, Л. И. Теоретическая		
Выполнение домашних заданий и подготовка к контрфольным работам	механика Метод. указания и контр. задания для студзаочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и др.; Под ред. С. М. Тарга 4-е изд М.: Высшая школа, 1989 111 с. ил. Диевский, В.А. Теоретическая механика. Интернет-тестирование базовых знаний. [Электронный ресурс] / В.А. Диевский, А.В. Диевский. — Электрон. дан. — СПб. : Лань, 2010. — 144 с. — Режим доступа: http://e.lanbook.com/book/128 — Загл. с экрана.	4	15
Подготовка к экзамену	Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил. Котова, Л. И. Теоретическая механика Метод. указания и контр. задания для студзаочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и др.; Под ред. С. М. Тарга 4-е изд М.: Высшая школа, 1989 111 с. ил. Диевский, В.А. Теоретическая механика. Интернет-тестирование базовых знаний. [Электронный ресурс] / В.А. Диевский, А.В. Диевский. — Электрон. дан. — СПб. : Лань, 2010. — 144 с. — Режим доступа: http://e.lanbook.com/book/128 — Загл. с экрана.	4	20,5
Выполнение домашних заданий и подготовка к контрфольным работам	Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т 4-е изд., испр М.: Наука, 1988 215 с. ил. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова 2-е изд М.: Наука, 1975 415 с. ил. Котова, Л. И. Теоретическая механика Метод. указания и контр. задания для студзаочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и	3	21

др.; Под ред. С. М. Тарга 4-е изд М Высшая школа, 1989 111 с. ил. Диевский, В.А. Теоретическая механии Интернет-тестирование базовых знани [Электронный ресурс] / В.А. Диевский А.В. Диевский. — Электрон. дан. — С : Лань, 2010. — 144 с. — Режим достур http://e.lanbook.com/book/128 — Загл. с экрана.	а. i. Iб.
---	-----------------

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	Письменная контрольная работа №1	1	10	В контрольной работе 5 задач, покрывающих изучаемые разделы курса. Максимальный балл за контрольную работу 10. Каждая задача оценивается в 2 балла. Если приводится верное решение и верный ответ, тогда начисляется 2 балла. Если решение не приводится, или оно неверно, то начисляется 0 баллов независимо от ответа. При наличии только верного решения начисляется один балл.	дифференцированный зачет
2	3	Текущий контроль	Письменная контрольная работа №2	1	10	В контрольной работе 5 задач, покрывающих изучаемые разделы курса. Максимальный балл за контрольную работу 10. Каждая задача оценивается в 2 балла. Если приводится верное решение и верный ответ, тогда начисляется 2 балла. Если решение не приводится, или оно неверно, то начисляется 0 баллов независимо от ответа. При наличии только верного решения начисляется один балл.	дифференцированный зачет
3	3	Текущий контроль	Письменная контрольная	1	10	В контрольной работе 5 задач, покрывающих изучаемые	дифференцированный зачет

				1		T	1
			работа №3			разделы курса.	
						Максимальный балл за	
						контрольную работу 10.	
						Каждая задача оценивается в	
						2 балла. Если приводится	
						верное решение и верный	
						ответ, тогда начисляется 2	
						балла. Если решение не	
						приводится, или оно неверно,	
						то начисляется 0 баллов	
						независимо от ответа. При	
						наличии только верного	
						решения начисляется один	
						балл.	
						Бонусы начисляются по	
						усмотрению преподавателя за:	
						активную работу на лекциях и	
1	2	Голина	Усердие в		15	семинарах; наличие полных	дифференцированный
4	3	Бонус	учёбе	-	15	конспектов лекций и	зачет
						семинаров; аккуратное	
						исполнение всех заданий в	
						срок; etc	
						Контрольное мероприятие	
						(КМ) промежуточной	
						аттестации является	
						письменной работой. В работе	
						5 задач, покрывающих	
						изучаемые разделы курса.	
						Максимальный балл за КМ	
						промежуточной аттестации	
		Проме-				10. Каждая задача	
5	3	жуточная	Зачет	_	10	оценивается в 2 балла. Если	дифференцированный
		аттестация	3131		10	приводится верное решение и	зачет
		штто тыдгы				верный ответ, тогда	
						начисляется 2 балла. Если	
						решение не приводится, или	
						оно неверно, то начисляется 0	
						баллов независимо от ответа.	
						При наличии только верного	
						решения начисляется один	
						балл.	
						В контрольной работе 5 задач,	
						покрывающих изучаемые	
						разделы курса.	
						Максимальный балл за	
						контрольную работу 10.	
						Каждая задача оценивается в	
			Письменная			2 балла. Если приводится	
6	4	Текущий	контрольная	1	10	верное решение и верный	экзамен
	_ _	контроль	работа №4	1	10	ответ, тогда начисляется 2	OKOMINIOII
			paoora n⊻4			балла. Если решение не	
						приводится, или оно неверно,	
						приводится, или оно неверно, то начисляется 0 баллов	
						независимо от ответа. При	
						наличии только верного	
						1	
					<u> </u>	решения начисляется один	

						балл.	
7	4	Текущий контроль	Письменная контрольная работа №5	1	10	В контрольной работе 5 задач, покрывающих изучаемые разделы курса. Максимальный балл за контрольную работу 10. Каждая задача оценивается в 2 балла. Если приводится верное решение и верный ответ, тогда начисляется 2 балла. Если решение не приводится, или оно неверно, то начисляется 0 баллов независимо от ответа. При наличии только верного решения начисляется один балл.	экзамен
8	4	Текущий контроль	Письменная контрольная работа №6	1	10	В контрольной работе 5 задач, покрывающих изучаемые разделы курса. Максимальный балл за контрольную работу 10. Каждая задача оценивается в 2 балла. Если приводится верное решение и верный ответ, тогда начисляется 2 балла. Если решение не приводится, или оно неверно, то начисляется 0 баллов независимо от ответа. При наличии только верного решения начисляется один балл.	экзамен
9	4	Бонус	Усердие в учёбе	-	15	Бонусы начисляются по усмотрению преподавателя за: активную работу на лекциях и семинарах; наличие полных конспектов лекций и семинаров; аккуратное исполнение всех заданий в срок; etc	
10	4	Проме- жуточная аттестация	Экзамен	-	20	Экзамен является обязательным контрольным мероприятием промежуточной аттестации. Экзамен является письменной работой. Максимальное количество баллов за мероприятие - 20. Вес мероприятия - 2. Работа включает 5 задач, покрывающих изучаемые разделы курса. Каждая из задач оценивается в 4 балла. Если приводится верное решение и верный полный	экзамен

_	г г			T
			ответ, тогда начисляется 4	
			балла. Если решение не	
			приводится, или оно неверно,	
			то начисляется 0 баллов	
			независимо от ответа. При	
			наличии верного решения	
			начисляются баллы от 2-х до	
			4-х в зависимости от полноты	
			решения и от верности и	
			полноты ответа: верное	
			решение неверный ответ - 2	
			балла; верное решение и	
			неполный ответ -3 балла;	
			верное и полное решение и	
			неточный ответ -3 балла;	
			верное решение и полный	
			верный ответ - 4 балла.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
дифференцированный зачет	рейтинг, пройдя контрольное мероприятие (КМ)	В соответствии с пп. 2.5, 2.6 Положения
экзамен	1	В соответствии с пп. 2.5, 2.6 Положения

6.3. Оценочные материалы

I/ a = a = a = a = a = a = a = a = a =	Dogway many y of s wygyyyg				<u>No</u>	K	\mathbb{C}	1		
Компетенции	Результаты обучения	1	2	3 4	1 5	6	7	8	9	10
ОПК-1	Знает: основные положения классической механики Ньютона, связь законов сохранения механики с симметрией пространства и времени, основные понятия механики Гамильтона.	+	+	+-	+ +	-+	+	+	+-	+
OHK-I	Умеет: использовать методы механики Ньютона и Гамильтона для анализа и расчетов динамики процессов в механических системах, использовать оптико-механическую аналогию для анализа квантовомеханических систем	+	+	+-	+ +	-+	-+	+	+-	+
ОПК-1	Имеет практический опыт: построения качественных и количественных механических моделей объектов и процессов в естественнонаучной сфере деятельности	+	+	+-	+ +	-+	+	+	+-	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Ландау, Л. Д. Теоретическая физика Т. 1 Механика Учеб. пособие для физ. спец. ун-тов: В 10 т. 4-е изд., испр. М.: Наука, 1988. 215 с. ил.
- 2. Бутенин, Н. В. Курс теоретической механики [Текст] Т. 1 Статика и кинематика Т. 2 Динамика учеб. пособие для вузов по техн. специальностям: в 2 т. Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. 11-е изд., стер. СПб. и др.: Лань, 2009. 729 с.
- б) дополнительная литература:
 - 1. Голдстейн, Г. Классическая механика Пер. с англ. А. Н. Рубашова. 2-е изд. М.: Наука, 1975. 415 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Котова, Л. И. Теоретическая механика Метод. указания и контр. задания для студ.-заочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и др.; Под ред. С. М. Тарга. 4-е изд. М.: Высшая школа, 1989. 111 с. ил.
 - 2. Диевский, В.А. Теоретическая механика. Интернет-тестирование базовых знаний. [Электронный ресурс] / В.А. Диевский, А.В. Диевский. Электрон. дан. СПб. : Лань, 2010. 144 с. Режим доступа: http://e.lanbook.com/book/128

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Котова, Л. И. Теоретическая механика Метод. указания и контр. задания для студ.-заочников машиностроит., строит., транспортных, приборостроит. спец. вузов Л. И. Котова и др.; Под ред. С. М. Тарга. 4-е изд. М.: Высшая школа, 1989. 111 с. ил.
- 2. Диевский, В.А. Теоретическая механика. Интернет-тестирование базовых знаний. [Электронный ресурс] / В.А. Диевский, А.В. Диевский. Электрон. дан. СПб. : Лань, 2010. 144 с. Режим доступа: http://e.lanbook.com/book/128

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	библиотечная система	Ландау, Л.Д. Теоретическая физика. Т.1 Механика. [Электронный ресурс] / Л.Д. Ландау, Е.М. Лифшиц. — Электрон. дан. — М.: Физматлит, 2007. — 224 с. — Режим доступа: http://e.lanbook.com/book/2231 — Загл. с экрана.
2	Основная литература	библиотечная система	Бутенин, Н.В. Курс теоретической механики. [Электронный ресурс] / Н.В. Бутенин, Я.Л. Лунц, Д.Р. Меркин. — Электрон. дан. — СПб. : Лань, 2009. — 736 с. — Режим доступа: http://e.lanbook.com/book/29 — Загл. с экрана.

3	Методические пособия для самостоятельной работы студента	Электронно- библиотечная система издательства Лань	Павленко, Ю.Г. Задачи по теоретической механике. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2003. — 526 с. — Режим доступа: http://e.lanbook.com/book/47544 — Загл. с экрана.
4	Дополнительная литература	Электронно- библиотечная система издательства Лань	Диевский, В. А. Теоретическая механика: учебное пособие / В. А. Диевский. — 4-е изд., испр. и доп. — Санкт-Петербург: Лань, 2021. — 336 с. — ISBN 978-5-8114-0606-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/168899 (дата обращения: 20.01.2022). — Режим доступа: для авториз. пользователей.
5	Методические пособия для самостоятельной работы студента	Электронно- библиотечная система издательства Лань	Диевский, В.А. Теоретическая механика. Интернеттестирование базовых знаний. [Электронный ресурс] / В.А. Диевский, А.В. Диевский. — Электрон. дан. — СПб. : Лань, 2010. — 144 с. — Режим доступа: http://e.lanbook.com/book/128 — Загл. с экрана.
6	Дополнительная дитература Электронно- библиотечная система издательства Лань		Гантмахер, Ф. Р. Лекции по аналитической механике: монография / Ф. Р. Гантмахер; под редакцией Е. С. Пятницкого. — Москва: ФИЗМАТЛИТ, 2001. — 264 с. — ISBN 978-5-9221-0067-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/47536. — Режим доступа: для авториз. пользователей.

Перечень используемого программного обеспечения:

1. Microsoft-Office(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
1 1	507 (1б)	проектор, компьютер, программное обеспечение PowerPoint
Текшии	507 (1б)	проектор, компьютер, программное обеспечение PowerPoint