ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОжно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranenkopa дата подписания: 140 5 2023

П. А. Тараненко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П0.18 Устойчивость механических систем для направления 15.03.03 Прикладная механика уровень Бакалавриат профиль подготовки Компьютерное моделирование и испытания высокотехнологичных конструкций форма обучения очная кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 729

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., заведующий кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооброга ПОУрГУ Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользоятель tranenkopa Пат

П. А. Тараненко

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского госуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Поль зовятель: Італенкора (Пат

П. А. Тараненко

1. Цели и задачи дисциплины

Цель дисциплины: сформулировать представление о всех возможных проявлениях потерь устойчивости механических систем, обратить внимание студентов на степень ответственности прочниста, своей подписью гарантирующего безопасную эксплуатацию спроектированной тонкостенной конструкции. Основные задачи: 1. Наглядно продемонстрировать основные понятия теории упругой устойчивости. 2. На примерах простых задач устойчивости тонкостенных стержней, пластин и оболочек показать то общее, что присуще большинству задач устойчивости тонкостенных упругих систем . 3. На конкретных примерах реальных конструкций дать возможность студенту поразмышлять над конструктивными решениями с позиции устойчивости упругих систем. 4. Дать возможность ученику опытным путем проверить истинность теоретических положений, сопоставив их с результатами модельного эксперимента (верификация эксперимента).

Краткое содержание дисциплины

Круг вопросов настоящего курса включает в себя: теорию устойчивости тонкостенных стержней, пластин и оболочек, в том числе и подкрепленных; вывод расчетных зависимостей и анализ пределов их применимости; узнавание курса в содержании справочное литературы по расчету на устойчивость силовых конструкций.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-4 Способен на научной основе организовать свой труд и решать научно-технические задачи в области прикладной механики на основе достижений техники и технологий, классических теорий и методов, физико-механических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным наукоемким процессам, машинам и конструкциям	Знает: допущения, лежащие в основе классических решений задач устойчивости тонкостенных упругих систем; критерии исследования устойчивости механических систем; основные формулы для определения критических параметров стержней, пластин и цилиндрических оболочек; теоремы теории устойнивости упругих систем; основные метолы

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Строительная механика машин,	Не предусмотрены

Теория упругости,
Вычислительные методы решения инженерных
задач,
Практикум по виду профессиональной
деятельности,
Строительная механика оболочек,
Основы расчетов на прочность в инженерной
практике,
Статистическая механика,
Численные методы технической механики,
Цифровое моделирование динамики машин и
механизмов,
Анализ механической системы твердых тел,
Основы автоматизации инженерных расчетов,
Строительная механика пластин,
Аналитическая динамика

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: возможности современных численных
	методов решения задач об оболочках, основные
	гипотезы технической теории оболочек Умеет:
	выбирать методы и приемы моделирования,
	обеспечивающие эффективность и адекватность
	расчетных моделей, записывать и решать
	определяющие уравнения, описывающие
Строительная механика оболочек	напряженно-деформированное состояние
	оболочек Имеет практический опыт: применения
	соответствующих численных методов для
	определения напряженно-деформированного
	состояния оболочечных конструкций, получения
	аналитических и численных (с использованием
	САЕ-программ) оценок напряженного состояния
	в задачах об оболочках
	Знает: формулировки задач расчета конструкций
	различных типов (тонкостенные стержни,
	толстостенные цилиндры, быстровращающиеся
	диски, кольцевые детали), возможности
	современных численных методов решения задач
	расчета напряженно-деформированного
	состояния в конструкциях различных типов
	Умеет: записывать и решать определяющие
Строительная механика машин	уравнения, описывающие напряженно-
e i poni constitui menumu muumm	деформированное состояние рассматриваемых
	конструкций, выбирать методы и приемы
	моделирования, обеспечивающие эффективность
	и адекватность расчетных моделей Имеет
	практический опыт: получения аналитических и
	численных (с использованием САЕ-программ)
	оценок напряженного состояния, применения
	соответствующих численных методов для
	определения напряженно-деформированного

	acceptagying recovery www.		
	состояния конструкций		
	Знает: тензорный аппарат, используемый в		
	механике твердого тела, основные меры		
	напряженно-деформированного состояния,		
	уравнения, законы и принципы теории		
	упругости; основы метода конечных элементов;		
	классические задачи теории упругости в 3D и 2D		
	постановке, основы тензорной алгебры и тензорного анализа, которые с одной стороны		
	необходимы для формирования объемного		
	представления о мерах напряженно-		
	деформированного состояния и основных		
	законах механики твердого деформируемого		
	тела, а с другой стороны помогают развить		
	системное и критическое мышление Умеет:		
	решать задачи теории упругости, привлекая для		
	этого тензорный аппарат; выполнять анализ		
Теория упругости	напряженно-деформированного состояния в		
	точке тела; составлять матричную модель МКЭ		
	стержневой и плоской конструкции,		
	представлять меры напряженного и		
	деформированного состояния в точке тела, а		
	также основные уравнения механики твердого		
	деформируемого тела в тензорной форме, при		
	необходимости переходя от нее к координатной и		
	матричной Имеет практический опыт:		
	организации своего труда на научной основе;		
	применения классических задач и методов		
	теории упругости, физико-механических,		
	математических и компьютерных моделей, представления основных уравнений теории		
	представления основных уравнении теории упругости в различных формах записи;		
	применения тензорного аппарата к решению		
	задач механики		
	Знает: основные положения теории		
	погрешностей; методы аппроксимации числовых		
	данных; теоретические основы методов		
	численного интегрирования,		
	дифференцирования, решения нелинейных		
	уравнений и их систем, численного решения		
	задачи Коши и краевой задачи для		
Пиононии за матани даучина ама у мачачичи	обыкновенных дифференциальных уравнений		
тисленные методы технической механики	Умеет: использовать методы численного		
	интегрирования, дифференцирования, решения		
	нелинейных уравнений и их систем, численного		
	решения задачи Коши и краевой задачи,		
	оценивать погрешность результата Имеет		
	практический опыт: использования пакета		
	программ Mathcad для решения вычислительных		
	задач Знает: способы поиска и возможные источники		
	информации по профессиональной тематике		
Практикум по виду профессиональной	информации по профессиональной тематике, основы численных методов решения задач		
Практикум по виду профессиональной деятельности	основы численных методов решения задач		

	анализировать информацию, доступную в профессиональных публикациях, для			
	конкретизации задач исследования, выбирать			
	численные методы для расчета напряженно-			
	деформированного состояния конструкций			
	различных типов, выбирать особенности			
	применения численных методов в конкретных			
	задачах, выбирать способы компьютерной			
	реализации рассматриваемых методов Имеет			
	практический опыт: подготовки обзора			
	литературы с формулировкой целей и задач			
	исследования, подготовки соответствующего			
	доклада, решения задач прочности типовых			
	конструкций с использованием численных			
	методов, использования нормативной			
	документации для интерпретации результатов			
	расчетов, применения современных пакетов			
	программ (САЕ) для моделирования			
	конструкций с достаточным уровнем			
	адекватности			
	Знает: методы схематизации случайных			
	процессов, методы расчетной оценки			
	долговечности деталей при многоцикловом			
	случайном нагружении, способы поиска			
	информации, необходимой для решения задач			
	статистической механики, основные положения			
	теорий случайных чисел и случайных процессов,			
	а также статистической динамики Умеет:			
	выполнять схематизацию случайного процесса,			
	получать расчетную оценку усталостной			
	долговечности, критически анализировать			
	информацию о свойствах материалов и условиях			
Статистическая механика	работы конструкции, обрабатывать			
	зкспериментальные данные, получать			
	статистические характеристики случайных			
	процессов; получать частотные передаточные			
	1 -			
	функции линейных динамических систем Имеет			
	практический опыт: получения расчетной оценки			
	усталостной долговечности, подготовки			
	технической документации, навыками			
	использования пакета программ MathCad для			
	обработки экспериментальных данных и			
	получения функции спектральнй плотности			
	случайного процесса			
	Знает: современные пакеты 1D и 3D цифрового			
	моделирования динамики сборок из абсолютно			
	твердых тел, теоретические основы и методы			
	цифрового моделирования Умеет: определять			
	кинематические и динамические параметры			
Цифровое моделирование динамики машин и	конструкции (перемещения, скорости и			
механизмов	ускорения точек), разрабатывать цифровые			
	виртуальные модели исследуемых механических			
	систем, учитывающих особенности их			
	конструкции Имеет практический опыт:			
	кинематического и динамического анализа			
	систем твердых тел, работы с пакетами			
	енетом твердых тол, расоты с пакстами			

	многотельной динамики (MultiBody Dynamics)
	для цифрового компьютерного моделирования
	динамических систем
	Знает: основные гипотезы технической теории
	пластин, возможности современных численных
	методов решения задач о пластинах Умеет:
	записывать и решать определяющие уравнения,
	описывающие напряженно-деформированное
	состояние пластин, выбирать методы и приемы
	моделирования, обеспечивающие эффективность
Строительная механика пластин	и адекватность расчетных моделей Имеет
	практический опыт: получения аналитических и
	численных (с использованием САЕ-программ)
	оценок напряженного состояния в задачах о
	пластинах, применения соответствующих
	численных методов для определения
	напряженно-деформированного состояния
	конструкций из пластин
	Знает: основные понятия теории малых
	колебаний линейных систем с конечным числом
	степеней свободы, основные понятия,
	физические основы и методы математического
	анализа динамического поведения механических
	систем, базовые фундаментальные,
	естественнонаучные положения аналитической
	динамики и теории колебаний Умеет: выполнять
	расчет собственных частот и собственных форм
	малых колебаний линейных консервативных
	систем с конечным числом степеней свободы,
	ставить и решать задачи о движении и
	равновесии материальных объектов,
	конструкций и сооружений, классифицировать
	механическую систему на основании выявления
	наложенных связей и записи их уравнений;
Аналитическая динамика	определять число степеней свободы
	механической системы; записывать уравнения
	движения; составлять и решать
	характеристическое уравнение; устанавливать
	характер движения механической системы
	(колебательный или неколебательный) Имеет
	практический опыт: расчета установившихся и
	неустановившихся колебаний линейных
	консервативных систем с конечным числом
	степеней свободы, анализа результатов решения
	задач динамического поведения механических
	систем с конечным числом степеней свободы,
	формулировки выводов и оформления отчетов о
	выполненных исследованиях, записи
	дифференциальных уравнений движения в
	прямой форме, обратной форме, с помощью
	уравнений Лагранжа второго рода
	Знает: компьютерные системы моделирования
	динамики механизмов из абсолютно твердых тел,
Анализ механической системы твердых тел	теоретические основы и методы компьютерного
	моделирования Умеет: выполнять
	кинематический и динамический анализ

	
	механической системы, разрабатывать виртуальные модели исследуемых механических систем, учитывающих особенности их конструкции Имеет практический опыт: кинематического и динамического анализа механических систем, работы с пакетами многотельной динамики (MultiBody Dynamics) для компьютерного моделирования динамических систем, состоящих из твердых тел Знает: классические и технические теории и методы, прогрессивные физикомеханические, математические и компьютерные модели для оценки предельных состояний разного рода конструкций, обладающие высокой степенью
Основы расчетов на прочность в инженерной практике	адекватности реальным процессам и объектам, современные подходы, в том числе, математические модели к определению предельных состояний элементов конструкций, возникающие при однократном, повторнопеременном и длительном (при повышенной температуре) нагружении Умеет: определять предельные состояния, включая образование трещин, на основе классических и технических теорий и методов, современных адекватных физико- механических, математических и компьютерных моделей, применять современные теории, физико-математические и численные методы исследования закономерностей реализации предельных состояний изделий в условиях однократного, повторно- переменного и длительного нагружения Имеет практический опыт: решения задач, связанных с определением различных предельных состояний, обладать навыками применения адекватных физикомеханических, математических и компьютерных моделей, расчетов и навыки использования пакетов прикладных программ, включая академические пакеты МКЭ,, а также новых систем компьютерного проектирования и компьютерного инжиниринга для оценки
Основы автоматизации инженерных расчетов	прочности элементов конструкций Знает: основные физические явления и процессы, системы компьютерной математики для решения задач в области прикладной механики с помощью существующих информационных технологий и компьютерных программ; основы проведения математических вычислений инженерных расчетов в компьютерной программе Mathcad, существующие информационные технологии и компьютерные программы для проведения инженерных расчетов; основы расчетов элементов конструкций и проведения математических вычислений с использованием вычислительных методов Умеет: проводить основные математические вычисления в системе

Mathcad; применять стандартные математические функции программы Mathcad при проведении необходимых инженерных расчетов, расчетов на прочность, жёсткость и устойчивость типовых стержневых систем; применять физико-математические методы для решения практических задач; применять вероятностные и статические методы при обработке экспериментальных данных, проводить расчеты на прочность, жесткость и устойчивость типовых стержневых систем и элементов конструкций с помощью программ компьютерной математики; применять современные математические пакеты программ для обработки результатов эксперимента Имеет практический опыт: решения конкретных задач с помощью численных методов; самостоятельного проведения расчетов на прочность, жёсткость и устойчивость типовых элементов конструкций в программе MathCAD; обработки экспериментальных данных при практической работе на компьютере с применением современных вычислительных систем; навыками применения физико-математического аппарата и методов математического и компьютерного моделирования в процессе профессиональной деятельности, расчета на прочность элементов конструкций с использованием современных вычислительных систем; применения математического аппарата для статистической обработки результатов эксперимента Знает: основные вычислительные методы решения инженерных задач Умеет: применять Вычислительные методы решения инженерных вычислительные методы в профессиональной задач деятельности Имеет практический опыт: использования вычислительных методов решения инженерных задач

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 40,5 ч. контактной работы

Вид учебной работы		Распределение по семестрам в часах Номер семестра 8		
Общая трудоёмкость дисциплины	72	72		
Аудиторные занятия:	36	36		
Лекции (Л)	12	12		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	12	12		
Лабораторные работы (ЛР)	12	12		

Самостоятельная работа (СРС)	31,5	31,5
Подготовка к занятиям по решению нестандартных задач повышенной сложности	10	10
Подготовка к экзамену	10	10
Подготовка отчетов по лабораторным работам	11,5	11.5
Консультации и промежуточная аттестация	4,5	4,5
Вид контроля (зачет, диф.зачет, экзамен)	-	диф.зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в				
л <u>е</u> раздела		часах				
		Всего	Л	П3	ЛР	
	Основные понятия теории упругой устойчивости	4	2	2	0	
2	Устойчивость прямых стержней	7	3	2	2	
3	Устойчивость прямоугольных пластин	7	3	2	2	
4	Устойчивость цилиндрических оболочек	18	4	6	8	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Столкновение с проблемой устойчивости: следствие уравнения нелинейного краевого эффекта. По следам задачи Эйлера: устойчивость консольной стойки под действием "мертвой" и "следящей" сил. Невязки при решении задач устойчивости в постановке \эйлера. Диаграммы равновесия состояний деформируемых систем. Устойчивое и случаейное равновесие. Критические нагрузки. Классификация случаев потери устойчивости. О постановке задач устойчивости тонкостенных систем.	1
2	1	Устойчивое и случаейное равновесие. Критические нагрузки. Классификация случаев потери устойчивости. О постановке задач устойчивости тонкостенных систем.	1
3	2	Устойчивость стержней: основное линеаризованное уравнение; особенности формулировки граничных условий. Примеры использования основного уравнения. Два случая возможного понижения порядка основного уравнения. Устойчивость стержня на упругом основании: особенность поведения стержня при плавном изменении жесткости основания; зависимость критической силы от длины стержня.	1
4	2	Балка С.П.Тимошенко - учет влияния деформаций поперечного сдвига на величину критической силы. Формулы для расчета трехсложного стержня. Понятие местной устойчивости. Динамический критерий устойчивости. Случаи "мертвой" и "следящей" силы. Устойчивость свободного стержня под действием "следящей" силы.	1
5	2	Случаи "мертвой" и "следящей" силы. Устойчивость свободного стержня под действием "следящей" силы.	1
6	3	Устойчивость пластин. Понятие фиктивной поперечной нагрузки. Основное линеаризированное уравнение устойчивости. Аналитическое решение основного линеаризованного уравнения для свободной опертой по всему контуру пластины, равномерно сжатой в одном направлении. Зависимость коэффициента критического напряжения от условий закрепления сторон прямоугольной пластины. Устойчивость пластины при сдвиге. Поведение	1

		пластин после потери устойчивости.	
7	3	Устойчивость пластин. Понятие фиктивной поперечной нагрузки. Основное линеаризированное уравнение устойчивости. Аналитическое решение основного линеаризованного уравнения для свободной опертой по всему контуру пластины, равномерно сжатой в одном направлении. Зависимость коэффициента критического напряжения от условий закрепления сторон прямоугольной пластины. Устойчивость пластины при сдвиге. Поведение пластин после потери устойчивости.	1
8	3	Устойчивость пластин. Понятие фиктивной поперечной нагрузки. Основное линеаризированное уравнение устойчивости. Аналитическое решение основного линеаризованного уравнения для свободной опертой по всему контуру пластины, равномерно сжатой в одном направлении. Зависимость коэффициента критического напряжения от условий закрепления сторон прямоугольной пластины. Устойчивость пластины при сдвиге. Поведение пластин после потери устойчивости.	1
9	4	Устойчивость цилиндрической оболочки при осевом сжатии. Величина критического напряжения и возможные формы потери устойчивости. Устойчивость цилиндрической оболочки при внешнем давлении. Критические параметры. Формула П.Ф.Папковича. Зависимость критического давления от условий закрепления торцевых сечений оболочки.	1
10	4	Устойчивость подкрепленных оболочек. Влияние внутреннего давления на устойчивость оболочки при осевом сжатии. Влияние кольцевого оребрения на величину критического давления. Эффект "вафельного" оребрения в случае осевого сжатия и внешнего давления.	1
11	4	Устойчивость пластин. Понятие фиктивной поперечной нагрузки. Основное линеаризированное уравнение устойчивости. Аналитическое решение основного линеаризованного уравнения для свободной опертой по всему контуру пластины, равномерно сжатой в одном направлении. Зависимость коэффициента критического напряжения от условий закрепления сторон прямоугольной пластины. Устойчивость пластины при сдвиге. Поведение пластин после потери устойчивости.	1
12	4	Устойчивость подкрепленных оболочек. Влияние внутреннего давления на устойчивость оболочки при осевом сжатии. Влияние кольцевого оребрения на величину критического давления. Эффект "вафельного" оребрения в случае осевого сжатия и внешнего давления.	1

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Решение задач: устойчивость трубки при скоростном протекании сквозь нее жидкости.	2
2	2	Влияние условий закрепления стержня на величину критического усилия (четыре задачи решаются в компьютерном зале кафедры).	2
3		Устойчивость пластин: две задачи на определение критического напряжения в случаях, когда четыре стороны пластины закреплены и когда одна сторона пластины - свободна. Местная устойчивость тонкостенных стержней.	2
4	4	Показательные примеры устойчивости цилиндрической оболочки при осевом сжатии и действии поперечной силы.	2
5	4	Зависимость критического усилия и несущей способности цилиндрической оболочки от величины внутреннего давления.	2
6	4	Эффект подкрепления цилиндрической оболочки кольцевыми ребрами при нагружении внешним давлением.	2

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	,	Определение механических характеристик образцов и экспериментальных моделей оболочки. Статистическая обработка.	2
2	3	Общая и местная устойчивость тонкостенных стержней. Попадание в диапазон допустимых нагрузок.	2
3	4	Устойчивость цилиндрической оболочки при осевом статическом влиянии внутреннего давления на величину критического напряжения. Причины расхождения теории и эксперимента.	2
4		Устойчивость цилиндрической оболочки при нагружении внешним давлением и крутящим моментом. Еще раз убедиться, что с потерей устойчивости работоспособность конструкции исчерпывается.	2
5	/	Использование программного обеспечения с целью верификации экспериментальных и расчетных результатов. Подготовка отчета.	2
6	4	Защита отчета по лабораторным работам	2

5.4. Самостоятельная работа студента

	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к занятиям по решению нестандартных задач повышенной сложности	[3], по главам касающимся темы олимпиады: стержни - (10 час); пластины (8 час) - глава 9, с.162-178; оболочки (12 час) - главы 3,4,5,6 - выборочно только для гладких цилиндрических оболочек	8	10
Подготовка к экзамену	Основная литература: [1] гл.4 с.83-102, гл.5 с.107-134, гл.6 с.139-174, гл.7 с.183-210, гл.8 с.214-233; [2] раздел1 гл.4 с.43, раздел 2 гл.4 с.205; [3] Часть 2 гл.1 с.34-69, гл.2 с.71-80, гл.3 с.81-127, гл.4 с.128-153,гл.7 с.159-170. Дополнительная литература: [1] гл.1 с.15-89, гл.9 с.313-391, гл.11 с.506-598; [2] гл.1 с.11-25, гл.2 с.41-60, гл.3 с.66-104, гл.4 с.114-127, гл.5 с.132-152; [3] раздел 2 гл.3 с.47-82, гл.4 с.85-97, раздел 3 гл.11 с.181-188, гл.12 с.188-197.	8	10
Подготовка отчетов по лабораторным работам	Устойчивость упругих систем. Методические указания к лаб. работам/ Под ред. И.А. Иванова, ЧПИ, Челябинск, 1986 г.	8	11,5

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	8	Текущий контроль	Защита лабораторной работы №1	1	5	Защита лабораторной работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Общий балл при оценке складывается из следующих показателей: - выполнена обработка экспериментальных данных, сравнение с теоретическими значениями - 1 балл; сделаны обоснованные выводы и заключение - балл; - работа оформлена в соответствии с требованиями - 1 балл; - правильный ответ на один вопрос - 1 балл. Максимальное количество баллов - 5. Весовой коэффициент мероприятия - 1. Лабораторная работа оценивается в 5 баллов. Защита лабораторной	дифференцированный зачет
2	8	Текущий контроль	Защита лабораторной работы №2	1	5	работы осуществляется	дифференцированный зачет

	-				Т	,	_
						индивидуально.	
						Студентом	
						предоставляется	
						оформленный отчет.	
						Оценивается качество	
						оформления,	
						правильность	
						выводов и ответы на	
						вопросы (задаются 2	
						вопроса). При	
						оценивании	
						мероприятия	
						используется	
						балльно-рейтинговая	
						система оценивания	
						результатов учебной	
						деятельности	
						обучающихся	
						(утверждена приказом	
						ректора от 24.05.2019	
						г. №179). Общий балл	
						при оценке	
						_ -	
						складывается из	
						следующих	
						показателей: -	
						выполнена обработка	
						экспериментальных	
						данных, сравнение с	
						теоретическими	
						значениями - 1 балл;	
						сделаны	
						обоснованные выводы	
						и заключение - балл; -	
						работа оформлена в	
						соответствии с	
						требованиями - 1	
						балл; - правильный	
						ответ на один вопрос -	
						1 балл. Максимальное	
						количество баллов - 5.	
						Весовой коэффициент	
						мероприятия - 1.	
						Лабораторная работа	
						оценивается в 5	
				ļ		баллов.	
						Защита лабораторной	
						работы	
						осуществляется	
						индивидуально.	
		Тох	Dayyyyma = 2624	ĺ		Студентом	
3	8	Текущий	Защита лабораторной	1	5	предоставляется	дифференцированный
		контроль	работы №3			оформленный отчет.	зачет
						Оценивается качество	
						оформления,	
						правильность	
						выводов и ответы на	
						рыводов и отвсты на	l

						вопросы (задаются 2	
						вопросы (задаются 2 вопроса). При	
						оценивании	
						мероприятия	
						используется	
						балльно-рейтинговая	
						_	
						система оценивания	
						результатов учебной	
						деятельности	
						обучающихся	
						(утверждена приказом	
						ректора от 24.05.2019	
						г. №179). Общий балл	
						при оценке	
						складывается из	
						следующих	
						показателей: -	
						выполнена обработка	
						экспериментальных	
						данных, сравнение с	
						теоретическими	
						значениями - 1 балл;	
						сделаны	
						обоснованные выводы	
						и заключение - балл; -	
						работа оформлена в	
						соответствии с	
						требованиями - 1	
						балл; - правильный	
						ответ на один вопрос -	
						1 балл. Максимальное	
						количество баллов - 5.	
						Весовой коэффициент	
						мероприятия - 1.	
						Лабораторная работа	
						оценивается в 5	
						баллов.	
						Защита лабораторной	
						работы	
						осуществляется	
						индивидуально.	
						Студентом	
				ĺ		предоставляется	
						оформленный отчет.	
						Оценивается качество	
		Текущий	Защита лабораторной			оформления,	ифференцированный
4	8	контроль	работы №4	1	5	правильность	зачет
		ronihome	paooid 1124	ĺ		выводов и ответы на	DUTC1
						вопросы (задаются 2	
						вопроса). При	
				ĺ		оценивании	
						мероприятия	
				ĺ		используется	
						балльно-рейтинговая	
						система оценивания	
				ĺ		результатов учебной	
<u> </u>		<u> </u>	1			II J	1

						деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Общий балл при оценке складывается из следующих показателей: - выполнена обработка экспериментальных данных, сравнение с теоретическими значениями - 1 балл; сделаны обоснованные выводы и заключение - балл; - работа оформлена в соответствии с требованиями - 1 балл; - правильный ответ на один вопрос - 1 балл. Максимальное количество баллов - 5. Весовой коэффициент	
						мероприятия - 1. Лабораторная работа оценивается в 5 баллов.	
5	8	Текущий контроль	Защита лабораторной работы №5	1	5	Защита лабораторной работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании мероприятия используется балльно-рейтинговая система оценивании результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Общий балл при оценке складывается из следующих	дифференцированный зачет

						данных, сравнение с теоретическими значениями - 1 балл; сделаны обоснованные выводы и заключение - балл; - работа оформлена в соответствии с требованиями - 1 балл; - правильный ответ на один вопрос - 1 балл. Максимальное количество баллов - 5. Весовой коэффициент мероприятия - 1. Лабораторная работа оценивается в 5 баллов. Защита лабораторной работы осуществляется индивидуально. Студентом	
6	8	Текущий контроль	Защита лабораторной работы №6	1	5	предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Общий балл при оценке складывается из следующих показателей: - выполнена обработка экспериментальных данных, сравнение с теоретическими значениями - 1 балл; сделаны обоснованные выводы	

						и заключение - балл; - работа оформлена в соответствии с требованиями - 1 балл; - правильный ответ на один вопрос - 1 балл. Максимальное количество баллов - 5. Весовой коэффициент мероприятия - 1. Лабораторная работа оценивается в 5 баллов.	
7	8	Текущий контроль	Письменный опрос - контрольная работа	2	6	Письменный опрос осуществляется на последнем занятии изучаемого раздела. Студенту дается 3 задачи. Время отведенное на мероприятие - 30 мин. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Правильное решение задачи соответствует 2 баллам. Частично правильный ответ соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов — 6.	дифференцированный зачет
8	8	Проме- жуточная аттестация	Дифференцированный зачет	-	40	На диф.зачете происходит оценивание учебной деятельности обучающихся по дисциплине на основе полученных оценок за контрольнорейтинговые мероприятия	

, , , , , , , , , , , , , , , , , , , ,	
текущего контроля и	
промежуточной	
аттестации. Диф.зачет	
включает два	
мероприятия: ответы	
на два теоретических	
вопроса и решение	
двух практических	
задач Тематика	
теоретических	
вопросов и	
практических задач	
позволяют оценить	
сформированность	
компетенций. На	
ответы по вопросам	
теории отводится 1	
час. Критерии	
оценивания	
теоретических	
вопросов:	
Правильный ответ на	
теоретический вопрос	
соответствует 10	
баллам. Ответ на	
вопрос с	
незначительными	
неточностями 8	
баллов. Ответ на	
вопрос с неполным	
изложением	
информации - 4	
балла. Неправильный	
ответ на вопрос	
соответствует 0	
баллов. На решение	
задач отводится 1 час.	
Критерии оценивания	
решения задач: -	
расчет выполнен	
верно – 10 баллов; -	
расчет выполнен в	
целом верно, имеет	
недочеты – 8 баллов; -	
расчет выполнен с	
ошибками – 4 балла; -	
задача не выполнена –	
0 баллов.	
Максимальное	
количество баллов 40.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной	Процедура проведения	Критерии		
аттестации	Процедура проведения			
дифференцированный	На диф. зачете происходит оценивание учебной	В соответствии		

зачет	деятельности обучающихся по дисциплине на основе	с пп. 2.5, 2.6
	1 1	Положения
	мероприятия текущего контроля и промежуточной	
	аттестации. Диф. зачет включает два мероприятия: ответы	
	на два теоретических вопроса и решение двух	
	практических задач Тематика теоретических вопросов и	
	практических задач позволяют оценить сформированность	
	компетенций. На ответы по вопросам теории отводится 1	
	час. Критерии оценивания теоретических вопросов:	
	Правильный ответ на теоретический вопрос соответствует	
	10 баллам. Ответ на вопрос с незначительными	
	неточностями 8 баллов. Ответ на вопрос с неполным	
	изложением информации - 4 балла. Неправильный ответ	
	на вопрос соответствует 0 баллов. На решение задач	
	отводится 1 час. Критерии оценивания решения задач: -	
	расчет выполнен верно – 10 баллов; - расчет выполнен в	
	целом верно, имеет недочеты – 8 баллов; - расчет	
	выполнен с ошибками – 4 балла; - задача не выполнена – 0	
	баллов. Максимальное количество баллов 40. При	
	оценивании результатов учебной деятельности	
	обучающегося по дисциплине используется балльно-	
	рейтинговая система оценивания результатов учебной	
	деятельности обучающихся (утверждена приказом ректора	
	от 24.05.2019 г. № 179). Отлично: Величина рейтинга	
	обучающегося по дисциплине 85100 % Хорошо:	
	Величина рейтинга обучающегося по дисциплине 7584	
	%. Удовлетворительно: величина рейтинга обучающегося	
	по дисциплине 6074 %. Неудовлетворительно:	
	Величина рейтинга обучающегося по дисциплине 059 %	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1	J 2	√ <u>o</u> 3 ∠	4 K	M	[7	8
ПК-4	Знает: допущения, лежащие в основе классических решений задач устойчивости тонкостенных упругих систем; критерии исследования устойчивости механических систем; основные формулы для определения критических параметров стержней, пластин и цилиндрических оболочек; теоремы теории устойчивости упругих систем; основные методы исследования на устойчивость, оответствующие каждому из классов	+		+	+1-1	+++	- +	+
ПК-4	Умеет: объяснять на примерах технических систем конкретные конструктивные решения на основе знаний теории устойчивости и решать соответствующие задачи; определять к какому из классов относится данная упругая система; выбирать метод исследования на устойчивость	+	+-	+	+	 	-	+
11K-4	Имеет практический опыт: исследования на устойчивость разных классов упругих систем	+	+	+-	+	+++	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Алфутов, Н. А. Устойчивость движения и равновесия Учеб. для вузов по направлению подгот. дипломир. специалистов в обл. машиностроения и систем упр. Н. А. Алфутов, К. С. Колесников; Под ред. К. С. Колесникова. 2-е изд., стер. М.: Издательство МГТУ им. Н. Э. Баумана, 2003. 252,[1] с.
 - 2. Феодосьев, В. И. Избранные задачи и вопросы по сопротивлению материалов [Текст] учеб. пособие для втузов В. И. Феодосьев. 5-е изд., испр. и доп. М.: Наука: Физматлит, 1996. 365, [1] с. ил.
 - 3. Лизин, В. Т. Проектирование тонкостенных конструкций Учеб. пособие для вузов по направлению "Авиа-и ракетостроение" В. Т. Лизин, В. А. Пяткин. 3-е изд., перераб. и доп. М.: Машиностроение, 1994. 380,[1] с. ил.

б) дополнительная литература:

- 1. Пановко, Я. Г. Устойчивость и колебания упругих систем: Соврем. концепции, парадоксы и ошибки. 3-е изд., перераб. М.: Наука, 1979. 384 с. ил.
- 2. Прочность. Устойчивость. Колебания Справ.: В 3 т. Т. 2 Под общ. ред. И. А. Биргера, Я. Г. Пановко; Авт. т. А. Я. Александров, С. А. Амбарцумян, В. Л. Бидерман и др. М.: Машиностроение, 1968. 463 с. ил.
- 3. Прочность. Устойчивость. Колебания [Текст] Т. 3 справочник : в 3 т. В. В. Болотин и др.; под общ. ред. И. А. Биргера, Я. Г. Пановко. М.: Машиностроение, 1968. 567 с. черт.
- 4. Санжаровский, Р. С. Теория расчета строительных конструкций на устойчивость и современные нормы [Текст] учеб. пособие для строит. специальностей вузов Р. С. Санжаровский, А. А. Веселов. СПб. ; М.: АСВ, 2007. 126,[1] с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Реферативный журнал 16. Механика: серия 16В. Механика деформируемого твердого тела. Раздел "Устойчивость упругих систем". Серия 16Д. Прочность конструкций и материалов. Раздел "Прочность машиностроительных конструкций".
- г) методические указания для студентов по освоению дисциплины:
 - 1. Устойчивость упругих систем. Методические указания к лаб. работам / Под ред. И.А. Иванова, ЧПИ, Челябинск 1986 г.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Устойчивость упругих систем. Методические указания к лаб. работам / Под ред. И.А. Иванова, ЧПИ, Челябинск 1986 г.

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная	Электронно-	Лизин, В.Т. Проектирование тонкостенных конструкций:

		система издательства Лань	Учебное пособие для студентов вузов. [Электронный ресурс]: учеб. пособие / В.Т. Лизин, В.А. Пяткин. — Электрон. дан. — М.: Машиностроение, 2003. — 448 с. — Режим доступа: http://e.lanbook.com/book/817
2	- F J F	Электронно- библиотечная система издательства Лань	Прочность, устойчивость и колебания ферменных и рамных конструкций аэрокосмических систем: Учебное пособие по курсам «Прочность конструкций аэрокосмических систем», «Строительная механика конструкций аэрокосмических систем». [Электронный ресурс]: учеб. пособие / А.В. Беляев [и др.]. — Электрон. дан. — М.: МГТУ им. Н.Э. Баумана, 2006. — 80 с. — Режим доступа: http://e.lanbook.com/book/62037

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. PTC-MathCAD(бессрочно)
- 3. Dassault Systèmes-SolidWorks Education Edition 500 CAMPUS(бессрочно)
- 4. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары		Компьютерный класс – 12 шт. Компьютеры Intel Pentium Core i5, 8 Гб ОЗУ, 512 Мб HDD, монитор Асег 20", клавиатура, мышь, предустановленное лицензионное ПО Solidworks, Ansys, MathCAD
1 1	(1)	Экспериментальные установки для реализации различных случаев нагружения модельных цилиндрических оболочек, пластин и тонкостенных стержней.
Лекции	336 (2)	Проектор, экран, Компьютер Intel Pentium Core i3, 4 Гб ОЗУ, 512 Мб HDD, монитор Acer 20", клавиатура, мышь, предустановленное лицензионное ПО Solidworks, Ansys, MathCAD