ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель специальности

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дойкин А. А. Пользователь: dokana Дила подписания 2029-2025

А. А. Дойкин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.11.М13.02 Проектирование деталей машин для специальности 23.05.01 Наземные транспортно-технологические средства уровень Специалитет форма обучения очная кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 23.05.01 Наземные транспортно-технологические средства, утверждённым приказом Минобрнауки от 11.08.2020 № 935

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доцент

Дасктронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Южнь-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranethops (В 62 02)

Электронный документ, подписанный ПЭП, хранится в системе межгронного документооборога (Ожно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Зарешин А. А. Пользователь: дателізая Дата подписания: 05.06.2025

П. А. Тараненко

А. А. Зарезин

1. Цели и задачи дисциплины

Цель дисциплины: освоить приемы и методы проектирования деталей машин с использованием средств автоматизации и САПР. Задачи дисциплины: овладеть средствами поиска технической информации, и применения существующих методик для решения технической задачи проектирования; овладеть средствами САD для построения моделей деталей и сборочных единиц; применять средства САЕ для выполнения технических расчетов узлов и деталей машин; выполнять разработку конструкторской документации на основе полученных электронных моделей.

Краткое содержание дисциплины

Дисциплина "Проектирование деталей машин" направлена на получение практического опыта проектирования общемашиностроительных узлов и деталей машин. В рамках курса широко применяются средства автоматизированного проектирования классов САD и САЕ. Лекционные занятия проводятся в формате мастер-класса по заявленным темам с уклоном в сторону практического применения. В рамках практической и самостоятельной работы создается законченная цифровая модель проектируемого узла. Все этапы построения модели выполняются преимущественно с использованием средств автоматизации САПР.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: основы проектирования элементов
	машиностроительных конструкций; методы
	расчета кинематических и динамических
	характеристик элементов машиностроительных
	конструкций; методы расчета на прочность и
	жесткость типовых элементов конструкций;
	правила оформления конструкторской
	документации в соответствии с ЕСКД
	Умеет: составлять расчетные схемы; выбирать
	материалы деталей; выполнять силовые расчеты
УК-2 Способен управлять проектом на всех	с использованием современных средств
этапах его жизненного цикла	компьютерного моделирования; разрабатывать
	конструкции различных деталей с применением
	современных систем автоматизированного
	проектирования (САПР)
	Имеет практический опыт: использования
	современных систем автоматизированного
	проектирования; разработки и оформления
	цифровых параметрических эскизов, деталей,
	сборочных единиц в современных САПР;
	разработки электронной конструкторской
	документации по электронной модели изделия

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
------------------------------------	---------------------------------

видов работ учебного плана	видов работ
1.Ф.11.М11.01 Литейные технологии	1.Ф.11.М1.03 Управление производственными
заготовительного производства,	процессами в логистике,
1.Ф.11.М14.01 Создание цифровых моделей	1.Ф.11.М5.03 Моделирование материалов в
деталей и механизмов в САД-системах,	двигателестроении: получение, структура,
1.Ф.11.М2.01 Современные методы	свойства,
компьютерного геометрического моделирования,	1.Ф.11.М2.03 Основы архитектурно-
1.Ф.11.М13.01 Цифровое моделирование	дизайнерского проектирования, приемы
механизмов,	компьютерного моделирования,
1.Ф.11.М8.01 Основы 3D моделирования,	1.Ф.11.М11.03 Проектирование сварных
1.Ф.11.М5.01 Основы организации рабочих	соединений в изделии,
процессов поршневых двигателей,	1.Ф.11.М13.03 Расчеты на прочность,
1.Ф.11.М1.01 Базовые концепции логистического	1.Ф.11.М14.03 Технологическое
управления,	программирование,
1.О.29 Основы проектной деятельности	1.Ф.11.М8.03 Основы промышленного дизайна

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: теоретические основы логистического
yı oı kı	управления, принципы организации и
	управления цепями поставок, методы
	оптимизации логистических процессов,
	критерии оценки эффективности логистических
	операций, способы создания ценности для
	конечного потребителя через логистическое
	управление Умеет: анализировать логистические
	процессы в цепях поставок, выявлять проблемы
	и «узкие места» в логистических операциях,
	применять базовые концепции логистического
1.Ф.11.М1.01 Базовые концепции логистического	управления для оптимизации процессов,
управления	рассчитывать ключевые показатели
	эффективности логистической деятельности,
	разрабатывать и внедрять меры по повышению
	эффективности логистических операций Имеет
	практический опыт: работы с инструментами и
	методами логистического анализа, планирования
	и координации логистических операций,
	принятия решений в условиях неопределённости
	и изменчивости внешней среды, мониторинга и
	контроля выполнения логистических планов и
	задач, взаимодействия с участниками цепи
	поставок для обеспечения согласованности и
	эффективности операций
	Знает: Виды, особенности и оптимальные
	способы технологических операций литья Умеет:
1.Ф.11.М11.01 Литеиные технологии заготовительного производства	Осуществлять подбор технологической оснастки
	и оборудования для выполнения
	технологических операций литья Имеет
	практический опыт: Разработкой литейных
	технологий заготовительного производства
1.Ф.11.М14.01 Создание цифровых моделей	Знает: - имеет практический опыт использования

v arb	
деталей и механизмов в САD-системах	современных конечноэлементных пакетов для
	расчетов на прочность;- имеет практический
	опыт подготовки геометрических моделей для
	последующего расчета методом конечных
	элементов в широко распространенных САЕ
	системах; - имеет практический опыт расчетов на прочность, анализа результатов и формулировки
	выводов Умеет: применять САД-системы для
	проектирования деталей и механизмов
	машиностроительного назначения Имеет
	практический опыт: приемами создания
	цифровых моделей в САД-системах
	Знает: знает теоретические основы и методы цифрового моделирования механических систем
	Умеет: разрабатывать цифровые модели
	механических систем по их натурным
	прототипам;выполнять кинематический, силовой
	и динамический анализ конструкций;выполнять
	расчёт параметров конструкции, определяющих
1.Ф.11.М13.01 Цифровое моделирование	ее работоспособность;выполнять оптимизацию
механизмов	параметров конструкции Имеет практический
	опыт: использования современных программ
	моделирования твердотельной динамики;владеет
	современными методами компьютерного
	моделирования динамических системпостроения
	и исследования цифровых моделей машин и
	механизмов
	Знает: методики поиска, сбора и обработки
	графической и инженерно-технической
	информации;применять методики поиска, сбора
	и обработки графической и инженерно-
	технической информации и осуществлять
	критический анализ и синтез информации,
1 1 1 1 1 2 0 1 0	полученной из разных источников Умеет:
1.Ф.11.М2.01 Современные методы	пользоваться библиотеками стандартных и
компьютерного геометрического моделирования	оригинальных элементов чертежей и справочной
	информационной компьютерной базой данных
	Имеет практический опыт: методами поиска,
	сбора и обработки, критического анализа и
	синтеза графической и инженерно-технической
	информации;получения и переработки
	графической информации
	Знает: Методы проецирования и построения
	изображений геометрических фигур
	технологического оборудования, его деталей и
	узлов с использованием средств автоматизации
	проектирования и в соответствии с техническим
	заданием Умеет: Анализировать форму
1 & 11 M0 01 Oave 2D	предметов в натуре и по чертежам на основе
1.Ф.11.М8.01 Основы 3D моделирования	методов построения изображений
	геометрических фигур, проектировать
	технологическое оборудование с использованием
	средств автоматизации проектирования и в
	соответствии с техническим заданием Имеет
	практический опыт: Владеет решением
	метрических и позиционных задач, методами
	развити познановным зада і, потодани

	проецирования и изображения пространственных объектов при проведении расчётов по типовым методикам; на основе методов построения изображений геометрических фигур может проектировать технологическое оборудование с использованием стандартных средств автоматизации проектирования и в соответствии с техническим заданием
1.О.29 Основы проектной деятельности	Знает: требования, предъявляемые к проектной работе, способы представления и описания результатов проектной деятельности в соответствии с действующими правовыми нормами;альтернативные варианты решений для достижения намеченных результатов;разрабатывать план, определять целевые этапы и основные направления работ Умеет: декомпозировать цель как совокупность взаимосвязанных задач, выбирать оптимальные способы их решения, в соответствии с правовыми нормами и имеющимися ресурсами и ограничениями в процессе реализации проекта;анализировать альтернативные варианты решений для достижения намеченных результатов;разрабатывать план, определять целевые этапы и основные направления работ; Имеет практический опыт: пользоваться методами, приемами и средствами проектной деятельности, оценки рисков и ресурсов, публичного представления результатов проекта;навыками анализа альтернативных вариантов решений для достижения намеченных результатов;разрабатывать план, определять целевые этапы и основные направления работ;
1.Ф.11.М5.01 Основы организации рабочих процессов поршневых двигателей	Знает: теоретические основы рабочих процессов поршневых двигателей; принципы организации рабочих процессов и методы их расчета Умеет: выполнять подбор необходимых математических моделей и программных комплексов для выполнения расчетов определенных рабочих процессов и определения заданных параметров; решать задачи оптимизации параметров рабочих процессов Имеет практический опыт: выполнения математического моделирования и расчетного определения параметров процессов в рамках заданных ресурсов и ограничений; проведения анализа полученных результатов

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 72,5 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам
--------------------	-------	----------------------------

	часов	в часах
		Номер семестра
		4
Общая трудоёмкость дисциплины	144	144
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	71,5	71,5
Разработка конструкторской документации проекта	23,5	23.5
Прочностные расчеты моделей проекта	24	24
Выполнение геометрических моделей проекта	24	24
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	диф.зачет

5. Содержание дисциплины

No	Ш	Объем аудиторных занятий по видам			
раздела	Наименование разделов дисциплины	-	в часах		
риздени		Всего	Л	П3	ЛР
1	Техническое проектирование	4	2	2	0
2	Геометрическое моделирование средствами CAD	20	10	10	0
3	Автоматизация инженерных расчетов средствами САЕ	20	10	10	0
4	Автоматизированная разработка конструкторской документации	20	10	10	0

5.1. Лекции

<u>№</u> лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол-во часов
1	1	Общие сведения о проектировании и конструировании	2
2	2	Компас 3d. Основные принципы моделирования	2
3	2	Компас 3d. Параметрическая модель детали	2
4	2	Компас 3d. Модель сборки	2
5	2	Компас 3d. Стандартные изделия	2
6	2	Компас 3d. Приложение "Валы и механические передачи"	2
7	3	Прочностные расчеты узлов и деталей машин	2
8	3	APM Winmachine. Стандартные расчетные методики	2
9	3	Метод конечных элементов в расчете на прочность	2
10	3	Компас 3d. Приложение APM FEM. Расчет на прочность деталей	2
11	3	Компас 3d. Приложение APM FEM. Расчет на прочность узлов	2
12	4	Конструкторская документация и ЕСКД	2
13	4	Компас 3d. Ассоциированный чертеж	2
14	4	Компас 3d. Сборочный чертеж	2
15	4	Компас 3d. Спецификация	2
16	4	Компас 3d. Подготовка полного комплекта конструкторской документации	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
10	1	Техническое предложение: расчетная схема, кинематический расчет	2
20	2	Компас 3d. Модель по чертежу	2
30	2	Компас 3d. Параметрическая модель	2
40	2	Компас 3d. Модель узла	2
50	2	Компас 3d. Добавление стандартных изделий	2
60	2	Компас 3d. Моделирование зубчатой передачи	2
70	3	Расчет вала на статическую прочность	2
80	3	АРМ. Расчет вала на усталостную прочность	2
90	3	Компас 3d. Моделирование корпуса	2
100	3	Компас 3d. APM FEM. Расчет напряжений и деформаций корпуса	2
110	3	АРМ. Расчет на прочность крепежных деталей	2
120	4	Компас 3d. Простейший комплект КД	2
130	4	Компас 3d. Рабочий чертеж вала	2
140	4	Компас 3d. Сборочный чертеж узла	2
150	4	Компас 3d. Спецификация по сборке	2
160	4	Компас 3d. Архивирование и передача комплекта конструкторской документации	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
Разработка конструкторской документации проекта	Методические пособия для самостоятельной работы студента [5, 8]	4	23,5	
Прочностные расчеты моделей проекта	Методические пособия для самостоятельной работы студента [6]	4	24	
Выполнение геометрических моделей проекта	Методические пособия для самостоятельной работы студента [1, 2, 3, 4]	4	24	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

No	Ce-	Вид	Название	В. Макс.	Порядок начисления	Учи-
КМ	местр	контроля	контрольного	Вес балл	баллов	тыва-
		_	мероприятия			ется в ПА

10	4	Текущий контроль	Задание 1. Кинематический расчет	1	5	5 баллов: задание выполнено без ошибок, решения обоснованы, сдано своевременно, оформлено в соответствии с требованиями. 4 балла: задание выполнено без ошибок, решения обоснованы, сдано с опозданием, оформлено в соответствии с требованиями. 3 балла: задание выполнено без значительных ошибок, не все решения обоснованы, сдано с опозданием, оформлено некорректно. 2-0 баллов: задание выполнено с ошибками (2), с грубыми ошибками (1), не выполнено (0).	дифференцированный зачет
20	4	Текущий контроль	Задание 2. Модель по чертежу	1	5	5 баллов: задание выполнено без ошибок, решения обоснованы, сдано своевременно, оформлено в соответствии с требованиями. 4 балла: задание выполнено без ошибок, решения обоснованы, сдано с опозданием, оформлено в соответствии с требованиями. 3 балла: задание выполнено без значительных ошибок, не все решения обоснованы, сдано с опозданием, оформлено некорректно. 2-0 баллов: задание выполнено с ошибками (2), с грубыми ошибками (1), не выполнено (0).	дифференцированный зачет
30	4	Текущий контроль	Задание 3. Параметрический эскиз	1	5	5 баллов: задание выполнено без ошибок, решения обоснованы, сдано своевременно, оформлено в соответствии с требованиями. 4 балла: задание	дифференцированный зачет

	1		T	1	ı	Т	,
						выполнено без ошибок,	
						решения обоснованы,	
						сдано с опозданием,	
						оформлено в	
						соответствии с	
						требованиями.	
						3 балла: задание	
						выполнено без	
						значительных ошибок, не	
						все решения обоснованы,	
						сдано с опозданием,	
						оформлено некорректно.	
						2-0 баллов: задание	
						выполнено с ошибками	
						(2), с грубыми ошибками	
						(1), не выполнено (0).	
						5 баллов: задание	
						выполнено без ошибок,	
						решения обоснованы,	
						сдано своевременно,	
						оформлено в	
						соответствии с	
						требованиями.	
						4 балла: задание	
						выполнено без ошибок,	
						решения обоснованы,	
						сдано с опозданием,	
40	4	Текущий	Задание 4.	1	5	оформлено в	дифференцированный
40	4	контроль	Модель узла	1)	соответствии с	зачет
		•				требованиями.	
						3 балла: задание	
						выполнено без	
						значительных ошибок, не	
						все решения обоснованы,	
						сдано с опозданием,	
						оформлено некорректно.	
						2-0 баллов: задание	
						выполнено с ошибками	
						(2), с грубыми ошибками	
				L	L	(1), не выполнено (0).	
						5 баллов: задание	
						выполнено без ошибок,	
						решения обоснованы,	
						сдано своевременно,	
						оформлено в	
						соответствии с	
				ĺ		требованиями.	
50	1	Текущий	Задание 5. Расчет	1	5	4 балла: задание	дифференцированный
50	4	контроль	вала	1)	выполнено без ошибок,	зачет
		•				решения обоснованы,	
						сдано с опозданием,	
				ĺ		оформлено в	
						соответствии с	
						требованиями.	
						3 балла: задание	
						выполнено без	
			1			1	ı

						значительных ошибок, не все решения обоснованы, сдано с опозданием, оформлено некорректно. 2-0 баллов: задание выполнено с ошибками (2), с грубыми ошибками (1), не выполнено (0).	
60	4	Текущий контроль	Задание 6. Комплект конструкторской документации	1	5	5 баллов: задание выполнено без ошибок, решения обоснованы, сдано своевременно, оформлено в соответствии с требованиями. 4 балла: задание выполнено без ошибок, решения обоснованы, сдано с опозданием, оформлено в соответствии с требованиями. 3 балла: задание выполнено без значительных ошибок, не все решения обоснованы, сдано с опозданием, оформлено некорректно. 2-0 баллов: задание выполнено с ошибками (2), с грубыми ошибками (1), не выполнено (0).	дифференцированный зачет
100	4	Проме- жуточная аттестация	Итоговое тестирование	-	5	При оценивании результатов мероприятий используется бальнорейтинговая система оценивания результатов учебной деятельности обучающихся (утв. приказом ректора №179 от 24.05.2019). Тест содержит 20 вопросов, шкала оценивания: за каждый ответ 1 балл - ответ верный, 0 баллов - ответ неверный. Максимально количество баллов равно 20.	дифференцированный зачет

6.2. Процедура проведения, критерии оценивания

Не предусмотрены

6.3. Паспорт фонда оценочных средств

1/0	Doorway romy a Surroyaya		№ KM							
Компетенции	Результаты обучения	10	20	30	40	50	60	100		
УК-2	Знает: основы проектирования элементов машиностроительных конструкций; методы расчета кинематических и динамических характеристик элементов машиностроительных конструкций; методы расчета на прочность и жесткость типовых элементов конструкций; правила оформления конструкторской документации в соответствии с ЕСКД	+						+		
УК-2	Умеет: составлять расчетные схемы; выбирать материалы деталей; выполнять силовые расчеты с использованием современных средств компьютерного моделирования; разрабатывать конструкции различных деталей с применением современных систем автоматизированного проектирования (САПР)		+			+	+			
УК-2	Имеет практический опыт: использования современных систем автоматизированного проектирования; разработки и оформления цифровых параметрических эскизов, деталей, сборочных единиц в современных САПР; разработки электронной конструкторской документации по электронной модели изделия			+	+		+			

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Устиновский Е. П. Детали машин и основы конструирования : текст лекций : учеб. пособие для вузов по машиностр. направлениям подготовки и специальностям / Е. П. Устиновский, Ю. А. Шевцов, Е. В. Вайчулис ; под ред. Е. П. Устиновского ; Юж.-Урал. гос. ун-т, Каф. Теорет. механика и основы проектирования машин ; ЮУрГУ. Челябинск : Издательский Центр ЮУрГУ, 2010. 304, [1] с. : ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000494746
- 2. Разработка рабочих чертежей деталей передач: компьютеризир. учеб. пособие с программой расчета комплекса для контроля передач зацеплением / П. П. Сохрин и др.; Юж.-Урал. гос. ун-т, Каф. Теорет. механика и основы проектир. машин; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2011. 96, [1] с.: ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000487559
- 3. Устиновский Е. П. Проектирование передач зацеплением с применением ЭВМ: Компьютеризир. учеб. пособие с программами расчета передач: Учеб. пособие с программами расчета передач: Для вузов по машиностроит. специальностям / Е. П. Устиновский, Ю. А. Шевцов, Е. В. Вайчулис; Юж.-Урал. гос. ун-т, Каф. Основы проектирования машин; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2002. 192,[1] с.: табл.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000236415
- 4. Устиновский Е. П. Техническая документация в курсовом проектировании по деталям машин : учеб. пособие для вузов по машиностр. специальностям / Е. П. Устиновский, Ю. А. Шевцов, Е. В. Вайчулис ; Юж.-Урал. гос. ун-т, Каф. Теорет. механика и основы проектир. машин ; ЮУрГУ. -

Челябинск: Издательский Центр ЮУрГУ, 2012. - 83, [1] с.: ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000504496

б) дополнительная литература:

- 1. Разработка рабочих чертежей деталей передач: компьютеризир. учеб. пособие с программой расчета комплекса для контроля передач зацеплением / П. П. Сохрин и др.; Юж.-Урал. гос. ун-т, Каф. Теорет. механика и основы проектир. машин; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2011. 96, [1] с.: ил.. URL:
- http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000487559
- 2. Сохрин П. П. Проектирование валов : Учеб. пособие / Юж.-Урал. гос. ун-т, Каф. Основы проектирования машин; ЮУрГУ. Челябинск : Издательство ЮУрГУ, 2000. 93,[1] с. : черт.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000208088
- 3. Сохрин П. П. Техническая документация в курсовом проектировании по деталям машин и ПТМ: Учеб. пособие / П. П. Сохрин, Е. П. Устиновский, Ю. А. Шевцов; Юж.-Урал. гос. ун-т, Каф. Основы проектирования машин; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2001. 66, [1] с.: ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000224424
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Азбука КОМПАС-3D
 - 2. Сохрин П.П. Разработка рабочих чертежей деталей передач, 2011
 - 3. Приемы работы в КОМПАС-График
 - 4. Приемы работы в КОМПАС-3D
 - 5. Азбука КОМПАС-График
 - 6. AПМ FEM. Руководство пользователя
 - 7. Система проектирования спецификаций. Руководство пользователя
 - 8. Материалы и Сортаменты для КОМПАС Руководство пользователя

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Азбука КОМПАС-3D
- 2. Сохрин П.П. Разработка рабочих чертежей деталей передач, 2011
- 3. Приемы работы в КОМПАС-График
- 4. Приемы работы в КОМПАС-3D
- 5. Азбука КОМПАС-График
- 6. AПМ FEM. Руководство пользователя
- 7. Система проектирования спецификаций. Руководство пользователя

Электронная учебно-методическая документация

Перечень используемого программного обеспечения:

- 1. HTЦ «АПМ»-АРМ WinMachine(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. PTC-MathCAD(бессрочно)
- 4. ASCON-Компас 3D(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -Техэксперт(04.02.2024)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	201 (3г)	Поточный компьютерный класс