ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОжно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Воронцов А. Г. Пользователь: vorontsovag дата подписание: 90 45 2025

А. Г. Воронцов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П0.14.02 Специальные главы квантовой механики для направления 11.03.04 Электроника и наноэлектроника уровень Бакалавриат профиль подготовки Наноэлектроника: проектирование, технология, применение форма обучения очная кафедра-разработчик Физика наноразмерных систем

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.03.04 Электроника и наноэлектроника, утверждённым приказом Минобрнауки от 19.09.2017 № 927

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, д.физ.-мат.н., доц., профессор

Заектронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Южнь-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Веронцов А. Г. Пользователь: vorontsovag Liza подписание: 09 s.2 20.5

Электронный документ, подписанный ПЭП, хранится в системе межтронного документооборога (Ожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдат: Бескачко В. П. Подкователь Кежде Монтрального СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОДКОВАТЕЛЬНОГО СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОДКОВАТЕЛЬНОГО СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОДКОВАТЕЛЬНОГО СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОДКОВ О ВЛАДЕЛЬЦЕ ПЭП

А. Г. Воронцов

В. П. Бескачко

1. Цели и задачи дисциплины

Освоение основных понятий, представлений и методов, необходимых для описания движений микроскопических систем, формирование физической картины строения материи на атомном и субатомном уровнях.

Краткое содержание дисциплины

Курс содержит: 1) изложение математического аппарата, необходимого для адекватной интерпретации опытных фактов о свойствах и поведении микросистем, 2) мотивировку, формулировку и обсуждение основных положений нерелятивистской квантовой механики (аксиом), 3) формулировку квантовых законов движения в картинах Шредингера и Гейзенберга, 4) изложение приближенных методов решения задач квантовой механики (теории возмущений и вариационных методов), 5) рассмотрение квантовой теории момента импульса, имеющего орбитальное происхождение и связанного со спином частиц, 6) изучение особенностей в поведении систем, состоящих из тождественных частиц, 7) дает представлении о характере и способах решения задач о рассеянии частиц и о тех изменениях, которые нужно сделать в нерелятивистском варианте теории, чтобы описать движения и релятивистских частиц.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ПК-1 Способен строить простейшие физические	
и математические модели приборов, схем,	Имеет практический опыт: применять положения
устройств и установок электроники и	квантовой механики для построения физических
наноэлектроники различного функционального	и математических модели моделей, узлов, блоков
назначения, а также использовать стандартные	электроники и наноэлектроники различного
программные средства их компьютерного	функционального назначения
моделирования	

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Вычислительная математика, Введение в твердотельную электронику, Схемотехника цифровых устройств, Теория функций комплексного переменного, Квантовая механика, Программные системы инженерного анализа, Компьютерные сети и системы, Вычислительная электродинамика, Статистическая физика, Физика конденсированного состояния, Уравнения математической физики, Введение в квантовую обработку информации, Производственная практика (ориентированная, цифровая) (4 семестр)	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Уравнения математической физики	Знает: принципы построения математических моделей на основе законов физики; основные методы решения уравнений математической физики Умеет: Имеет практический опыт:
Схемотехника цифровых устройств	Знает: схемотехнические решения цифровых устройств; основные узлы и блоки цифровых электронных устройств Умеет: Имеет практический опыт:
Квантовая механика	Знает: положения квантовой механики, необходимые для построения физических и математических модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения Умеет: Имеет практический опыт:
Введение в твердотельную электронику	Знает: Умеет: строить физические и математические модели моделей, узлов, блоков твердотельной электроники Имеет практический опыт:
Введение в квантовую обработку информации	Знает: принципы и алгоритмы квантовой обработки информации; принципы работы квантовых компьютеров Умеет: Имеет практический опыт:
Теория функций комплексного переменного	Знает: положения теории функций комплексного переменного, необходимые для построения физических и математических модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения Умеет: Имеет практический опыт:
Компьютерные сети и системы	Знает: принципы проектирования и настройки компьютерных сетей и систем Умеет: Имеет практический опыт:
Вычислительная электродинамика	Знает: положения вычислительной электродинамики, необходимые для построения физических и математических модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения Умеет: Имеет практический опыт:
Программные системы инженерного анализа	Знает: Умеет: строить физические и математические модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения Имеет практический опыт: компьютерного моделирования моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения
Статистическая физика	Знает: положения статистической физики, необходимые для построения физических и математических модели моделей, узлов, блоков

	электроники и наноэлектроники различного функционального назначения Умеет: на основе атомистических моделей вычислять основные макроскопические характеристики (структурные, электрические и магнитные) конденсированных тел на основе методов статистической физики Имеет практический опыт:
Вычислительная математика	Знает: алгоритмы вычислительной математики необходимые для построения физических и математических модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения Умеет: Имеет практический опыт:
Физика конденсированного состояния	Знает: положения теорий, описывающих атомную структуру, электрические и магнитные свойства тел в конденсированном состоянии Умеет: строить упрощенные модели структурных, электрических и магнитных свойств конденсированных тел с использованием математического аппарата квантовой и классической физики Имеет практический опыт:
Производственная практика (ориентированная, цифровая) (4 семестр)	Знает: Умеет: использовать программное обеспечение в учебной и научно- исследовательской деятельности; решать задачи обработки данных Имеет практический опыт: самостоятельного написания компьютерных программ

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 40,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра
		8
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	36	36
Лекции (Л)	24	24
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	12	12
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	31,75	31,75
Подготовка к коллоквиумам по теории	16	16
Подготовка к зачету	15,75	15.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	·	Всего	Л	П3	ЛР
1	Математические основы квантовой механики	6	4	2	0
2	Основные положения квантовой механики	7	5	2	0
3	Квантовая теория момента импульса	7	4	3	0
4	Приближенные методы квантовой механики	8	5	3	0
)	Квантовая механика систем тождественных частиц	8	6	2	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Введение. Предмет и задачи квантовой механики. Линейные, унитарные и гильбертовы пространства (Н). Обобщенный ряд Фурье. $L2(\Omega)$ и 12 -реализации Н. 12 -реализация Н как следствие $L2(\Omega)$ -реализации. Волновая механика Шредингера и матричная механика Гейзенберга.	1
2	1	Алгебра линейных операторов в Н. Оператор, эрмитово сопряженный к данному. Эрмитов, антиэрмитов и унитарный операторы. Задача на собственные значения для линейных операторов в Н. Основные теоремы о свойствах собственных значений (СЗ) и собственных векторов (СВ) эрмитовых операторов.	2
3	1	Обобщенные решения задачи на СЗ. Обобщенная ортогональность СВ. δ-функция Дирака, ее свойства. Интеграл Фурье. Унитарная эквивалентность L2(R3) реализаций Н. Оператор Фурье. Координатное и импульсное представления в квантовой механике.	1
4		Мотивировка основных положений КМ. Амплитуды вероятностей, состояния квантовой системы и векторы гильбертова пространства. Наблюдаемые и эрмитовы операторы Собственные состояния наблюдаемых. Основные аксиомы КМ: 1) состояний, 2) наблюдаемых, 3) о статистической интерпретации. Полные наборы коммутирующих наблюдаемых. Основные теоремы о наблюдаемых: 1) о среднем значении наблюдаемой, 2) о флуктуциях несовместных наблюдаемых (принцип неопределенностей Гейзенберга)	1
5	2	Классические и квантовые скобки Пуассона. Алгебра Ли - универсальная алгебра наблюдаемых. Принцип соответствия (формулировка Дирака). Перестановочные соотношения для фундаментальных операторов КМ. Явный вид основных операторов КМ в координатном и импульсном представлениях	2
6	2	Квантовая динамика в картине Гейзенберга. Физический смысл зависимости наблюдаемых от времени. Интегралы движения. Пример: линейный гармонический осциллятор. Теорема Эренфеста. Контрпример - ангармонический линейный осциллятор.	1
7		Квантовая динамика в картине Шредингера. Уравнение Шредингера. Стационарное уравнение Шредингера. Уравнение непрерывности. Закон сохранения «квантовой информации». Парадокс ЭПР и квантовая информатика.	1
8	3	Преобразование состояний и наблюдаемых при вращениях системы координат. Коммутационные соотношения между компонентами оператора момента импульса и компонентами векторной наблюдаемой. Активная точка зрения на вращения - поворот вектора состояния. Связь между операторами поворота системы координат и поворота состояния.	1

9	3	Свойства операторов компонент момента импульса, вытекающие только из коммутационных соотношений. Спектры операторов jz ,j2. Свойство спектра jz быть целым или полуцелым. Спин частиц. Классификация частиц: бозоны и фермионы. Система собственных функций операторов 12,lz орбитального момента импульса. Сферические гармоники. Оператор инверсии и четность состояния.	2
10	3	Частицы со спином $\frac{1}{2}$. Явный вид операторов поворота. Бинарные преобразования. Спиноры. Сложение спиновых моментов двух частиц со спином $\frac{1}{2}$. Пример: атом гелия. Орто- и парасостояния гелия. Полный момент импульса частицы со спином $\frac{1}{2}$.	1
11 - 12	4	Приближенные методы квантовой механики. Стационарная теория возмущений. Теория возмущений Рэлея-Шредингера для невырожденного и вырожденного спектра. Теория возмущений Вигнера-Бриллюэна.	3
13 - 14	4	Теория возмущений, зависящих от времени. Вариационные методы. Метод Ритца-Хиллерааса. Квазиклассическое приближение, метод ВКБ.	2
15-16	5	Принцип неразличимости частиц в квантовой механике. Оператор перестановки пары частиц, его свойства. Свойства симметрии волновой функции системы тождественных частиц: бозоны и фермионы. Принцип Паули, различные формулировки	3
17-18	5	Система тождественных бозонов. Статистика Бозе-Эйнштейна. Система тождественных фермионов. Статистика Ферми.	3

5.2. Практические занятия, семинары

№ занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Характеризация множества как линейного, унитарного или гильбертова пространства. Линейная независимость элементов, базис. Ортонормированные базисы. Ортогонализация Грамма-Шмидта, примеры. Функциональная $L2(\Omega)$ и 12-реализация ГП. Операторы, сопряженные к данному. Самосопряженные и унитарные операторы. Задачи на собственные значения (СЗ) для линейных операторов в ГП. Линейные операторы в $L2(\Omega)$. Фундаментальные операторы КМ, оператор Гамильтона (Г). Задачи на СЗ для оператора Г. Интеграл Фурье. Прямое и обратное преобразования Фурье. Координатное и импульсное представления в КМ.	2
2		Аксиомы КМ. Вычисление средних значений и флуктуаций наблюдаемых. Нахождение коммутаторов наблюдаемых из принципа соответствия. Квантовая динамика, картина Гейзенберга. Задача о линейном гармоническом осцилляторе. Теорема Эренфеста: контрпример - ангармонический осциллятор. Квантовая динамика, картина Шредингера. Уравнение Шредингера (УШ). Стационарное УШ. Пример: свободная частица.	2
3	3	Задача на СЗ для операторов J2 и Jz, спектр и система СВ в случае орбитального момента. Сферические гармоники, четность состояния. Преобразование вектора состояния при вращениях системы координат для частиц со спином ½. Явный вид операторов спина в представлении, в котором операторы S2,Sz диагональны. Матрицы Паули, их свойства. Сложение угловых моментов: 1) две частицы со спином ½, 2) полный момент импульса частицы со спином ½.	3
4	4	Приближенные методы КМ. Теория возмущений Рэлея-Шредингера для невырожденного спектра и для случая вырождения. Пример: энергия ионизации атома гелия. Вариационные методы. Вариационный принцип. Метод Ритца-Хиллерааса для основного состояния системы. Пример:	3

		энергия основного состояния атома гелия. Нестационарная теория возмущений. Быстрые и медленные возмущения.	
5	5	Системы тождественных частиц в квантовой механике. Операторы перестановки частиц. Свойства симметрии векторов состояния по отношению к перестановкам частиц. Фермионы и бозоны. Принцип Паули. Система фермионов. Детерминант Слэтера. Система тождественных бозонов.	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

I	Выполнение СРС				
	Список литературы (с указанием		Кол-		
Подвид СРС	разделов, глав, страниц) / ссылка на	Семестр	во		
	ресурс		часов		
Подготовка к коллоквиумам по теории	ЭУМД, осн. лит 2, глава 1, с.5-23; 24-36; , глава 4, с. 59-77; глава 6, с. 96-116; глава 9, с.147-176; глава 13, с.223-237. ПУМД, осн. лит. 1, глава 1, с.8-63; глава 3, с. 162-196; глава 8, с. 297-307; глава 9, с. 308-332; глава 15, с. 466-490. ЭУМД, осн. лит. 1, глава 1, с. 13-39; 44-111; глава 4, с. 112-135; глава 6, с. 171-248; глава 8, с. 249-275; глава 9, с.281-290; глава 17, с. 609-616, 622-630. ПУМД, доп.лит. 2, глава 13, с. 13-77.	8	16		
Подготовка к зачету	ЭУМД, осн. лит 2, глава 1, с.5-23; 24-36; , глава 4, с. 59-77; глава 6, с. 96-116; глава 9, с.147-176; глава 13, с.223-237. ПУМД, осн. лит. 1, глава 1, с.8-63; глава 3, с. 162-196; глава 8, с. 297-307; глава 9, с. 308-332; глава 15, с. 466-490. ЭУМД, осн. лит. 1, глава 1, с. 13-39; 44-111; глава 4, с. 112-135; глава 6, с. 171-248; глава 8, с. 249-275; глава 9, с.281-290; глава 17, с. 609-616, 622-630. ПУМД, доп.лит. 2, глава 13, с. 13-77.	8	15,75		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

КМ местр контроля мероприятия балл	№ KM	Название контрольного Вес балл Порядок начисления баллов	Учи- тыва- ется в
------------------------------------	---------	--	-------------------------

							ПА
1	8	Текущий контроль	коллоквиум 1	1	5	В задании 5 вопросов из списка. Каждый правильный ответ - 1 балл	зачет
2	8	Текущий контроль	Коллоквиум 2	1	5	В задании 5 вопросов из списка. Каждый правильный ответ - 1 балл	зачет
3	8	Текущий контроль	Коллоквиум 3	1	5	В задании 5 вопросов из списка. Каждый правильный ответ - 1 балл	зачет
4	8	Текущий контроль	Коллоквиум 4	1	5	В задании 5 вопросов из списка. Каждый правильный ответ - 1 балл	зачет
5	8	Текущий контроль	Коллоквиум 5	1	5	В задании 5 вопросов из списка. Каждый правильный ответ - 1 балл	зачет
6	8	Проме- жуточная аттестация	Зачетное задание	1	10	В билете 2 теоретических вопроса и 2 задачи. Каждый теоретический вопрос: 2 балла - полностью правильный ответ, 1 балла - частично правильный ответ, 0 баллов - неправильный ответ. Каждая задача: 3 балла - полное правильное решение, 2 балла - правильное решение с недочетами, 1 балла - неправильное решение (есть правильные фрагменты решения), 0 баллов - неправильное решение.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	процедура - письменный ответ на задание, усные	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

К	омпетенции	Результаты обучения	1	N:	2 I 3	(N 4	<u>Л</u> 5 (с	,
Π	[K-1	Имеет практический опыт: применять положения квантовой механики для построения физических и математических модели моделей, узлов, блоков электроники и наноэлектроники различного функционального назначения	+	+	+	+-	+ -	

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

- б) дополнительная литература:
 - 1. Мессиа, А. Квантовая механика Т. 1 В 2-х т. Пер. с фр. В. Т. Хозяинова; Под ред. Л. Д. Фаддеева. М.: Наука, 1978. 478 с. ил.

- 2. Мессиа, А. Квантовая механика Т. 2 В 2-х т. Пер. с фр. П. П. Кулиша; Под ред. Л. Д. Фаддеева. М.: Наука, 1979. 583 с. ил.
- 3. Фейнман, Р. П. Фейнмановские лекции по физике [Текст] Вып. 8, 9 Квантовая механика пер. с англ. Р. П. Фейнман и др. 2-е изд. М.: Мир, 1978. 524 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Парфенов, П.С. Квантовая механика. Методическое пособие к практикуму по квантовой физике. [Электронный ресурс] Электрон. дан. СПб. : НИУ ИТМО, 2012. 133 с. Режим доступа: http://e.lanbook.com/book/43453 Загл. с экрана

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Парфенов, П.С. Квантовая механика. Методическое пособие к практикуму по квантовой физике. [Электронный ресурс] — Электрон. дан. — СПб.: НИУ ИТМО, 2012. — 133 с. — Режим доступа: http://e.lanbook.com/book/43453 — Загл. с экрана

Электронная учебно-методическая документация

№	Вид Наименование ресурса в электронной форме		Библиографическое описание
1	Основная литература	ЭБС издательства Лань	Ландау, Л.Д. Теоретическая физика Т.3. Квантовая механика (нерелятивистская теория). [Электронный ресурс] / Л.Д. Ландау, Е.М. Лифшиц. — Электрон. дан. — М.: Физматлит, 2001. — 808 с. http://e.lanbook.com/book/2380
2	и исновная питература		Елютин, П.В. Квантовая механика с задачами. [Электронный ресурс] / П.В. Елютин, В.Д. Кривченков. — Электрон. дан. — М.: Физматлит, 2001. — 300 c. http://e.lanbook.com/book/48207
3	Дополнительная литература	ЭБС издательства Лань	Блохинцев, Д.И. Основы квантовой механики. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2004. — 672 с. http://e.lanbook.com/book/619
4	Методические пособия для самостоятельной работы студента	лань (Пань на пань на	Парфенов, П.С. Квантовая механика. Методическое пособие к практикуму по квантовой физике. [Электронный ресурс] — Электрон. дан. — СПб. : НИУ ИТМО, 2012. — 133 с. http://e.lanbook.com/book/43453

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
1	505 (16)	компьютерная техника
LAIMITA	506 (1ნ)	компьютерная техника