ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Директор

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Таран С. М. Пользователь: tarassm 1: 905 2025

С. М. Таран

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П0.09 Газовая динамика в поршневых двигателях для направления 13.03.03 Энергетическое машиностроение уровень Бакалавриат профиль подготовки Перспективные двигатели форма обучения очная кафедра-разработчик Передовая инженерная школа двигателестроения и специальной техники "Сердце Урала"

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 13.03.03 Энергетическое машиностроение, утверждённым приказом Минобрнауки от 28.02.2018 № 145

Директор

Электронный документ, водинеанный ПЭП, хранится в системе электронного документооброрта (Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Польователь: transm)

С. М. Таран

Разработчик программы, д.техн.н., проф., профессор Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дазаров В Е. Подвователь: lazareve [ата подписания: 17 05 2025

В. Е. Лазарев

1. Цели и задачи дисциплины

Цель дисциплины — изучение основных физических явлений, сопровождающих высокоскоростное движение газовых потоков, и их закономерностей для обеспечения эффективной работы ДВС совершенствованием систем газообмена и агрегатов наддува. Задачи дисциплины: — изучение терминологии, основных понятий и определений дисциплины; — изучение основных физических процессов, сопровождающих течение газа в элементах систем комбинированных двигателей; — изучение теоретических закономерностей, лежащих в основе физических явлений при изменении состояния газовых потоков, и методов их исполь-зования при решении практических задач; — изучение особенностей движения газа в каналах различного профиля.

Краткое содержание дисциплины

Дисциплина "Газовая динамика" является составной частью дисциплины "Механика жидкостей и газов" и содержит следующие основные разделы: - основные понятия и положения Газовой динамики; - основные уравнения Газовой динамики; - основные модели и параметры состояния потока; - законы движения газовых потоков в соплах и диффузорах.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-1 Способность применять методы расчетного моделирования для анализа рабочих процессов и систем объектов энергетического машиностроения	Умеет: Использовать основные уравнения газовой динамики для решения прикладных задач двигателестроения Имеет практический опыт: Применения в решении прикладных задач методов моделирования газовых потоков в ДВС; теоретических основ рабочих процессов в энергетических машинах, аппаратах и установках
ПК-5 Способен понимать принципы работы, устройство и рабочие процессы объектов энергетического машиностроения	Знает: Теоретические основы газовой динамики

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Основы конструкции энергетических установок,	Динамика двигателей,
Основы проектной деятельности,	Испытания двигателей,
Энергетические машины и установки,	Автоматическое регулирование и управление
Химмотология,	двигателей внутреннего сгорания,
Надежность двигателей,	Технологии транспортного машиностроения,
Механика жидкости и газа,	Аналитические и цифровые методы
Моделирование и расчет рабочих процессов	конструирования двигателей,
двигателей внутреннего сгорания,	Агрегаты наддува двигателей,
Системы поршневых двигателей,	Производственная практика (преддипломная) (8

Компьютерная и механическая диагностика	семестр)
двигателей,	
Силовые установки транспортных средств,	
Системы диагностирования двигателей	
внутреннего сгорания,	
Производственная практика (ориентированная,	
цифровая) (4 семестр)	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Энергетические машины и установки	Знает: Общее устройство и принцип работы двигателя внутреннего сгорания, его систем, узлов и агрегатов, особенности работы работы двигателя внутреннего сгорания, его систем, узлов и агрегатов Умеет: Имеет практический опыт:
Основы конструкции энергетических установок	Знает: Область и объекты профессиональной деятельности выпускника по профилю "Перспективные двигатели", перечень решаемых профессиональных задач Умеет: Имеет практический опыт:
Надежность двигателей	Знает: Основные показатели надежности поршневых двигателей, факторы на них влияющие, общее устройство систем и агрегатов поршневых двигателей Умеет: Применять теоретические знания надежности двигателей при решении практических задач, проводить расчетную оценку показателей надежности поршневых двигателей Имеет практический опыт:
Моделирование и расчет рабочих процессов двигателей внутреннего сгорания	Знает: методы моделирования, расчета и оптимизации рабочих процессов, Основные процессы, протекающие в поршневых двигателях внутреннего сгорания; законы протекания рабочих процессов Умеет: использовать современные информационные технологии для моделирования процессов в системах и агрегатах ДВС, Моделировать и анализировать параметры рабочих процессов поршневых двигателей Имеет практический опыт: владеет приёмами и методами моделирования процессов, протекающих в поршневых энергетических установках, методами их графического интерпретирования и отображения в распространённых системах координат
Механика жидкости и газа	Знает: теоретические основы равновесия и движения жидких и газовых сред Умеет: описывать гидравлические системы уравнениями на основе законов сохранения Имеет практический опыт: выполнения простейших

	nachatan ahatan induratanan a amatan aarawa
	расчетов систем двигателей с учетом законов равновесия и движения жидких и газовых сред
	Знает: теоретические основы и принципы
	ведения проектной деятельности; современные
	методы проектирования изделий, основные
	методы выполнения расчетного моделирования; современные программные комплексы для
	проведения расчетного моделирования рабочих
	процессов и систем Умеет: самостоятельно
	решать поставленные прикладные задачи в
	рамках проектной деятельности; пользоваться
	автоматизированными программными
Основы проектной деятельности	комплексами для проектирования изделий,
	применять в практической деятельности
	современные программные комплексы для
	проведения расчетного моделирования рабочих
	процессов и систем Имеет практический опыт:
	проектирования и моделирования изделий с
	применением автоматизированных программных
	комплексов, выполнения расчетного
	моделирования рабочих процессов и систем
	объектов энергетического машиностроения
	Знает: Основные принципы проведения работ по
	диагностике двигателей внутреннего сгорания и
	его электронного оборудования, принципы
	работы, устройство электронных систем
	поршневых двигателей; современную
Системы диагностирования двигателей	номенклатуру диагностического оборудования
внутреннего сгорания	Умеет: применять диагностического оборудования
	и проводить диагностику систем двигателей
	Имеет практический опыт: Работы с
	диагностическим оборудованием и программами
	диагности геским осорудованием и программами диагностики
	Знает: методы и оборудование для проведения
	механической диагностики двигателей;
	принципы работы, устройство электронных
	систем поршневых двигателей, Основные
	принципы проведения работ по диагностике
Компьютерная и механическая диагностика	двигателей внутреннего сгорания и его
двигателей	электронного оборудования Умеет: проводить
	механическую и компьютерную диагностику
	двигателей Имеет практический опыт: Работы с
	диагностическим оборудованием и программами
	диагностическим осорудованием и программами диагностики
	Знает: Особенности конструкции разных видов
	силовых установок специальных машин;
	особенности работы силовых установок в
Силовые установки транспортных средств	условиях моторно-трансмиссионного отсека
Chilobbic yorunobkii ipunonopinbix epegerb	машины Умеет: Читать техническую литературу
	и конструкторскую документацию Имеет
	практический опыт:
	Знает: Устройство поршневых двигателей
Системы поршневых двигателей	внутреннего сгорания; современные достижения
	науки и техники, принципы работы, устройство
	систем и агрегатов поршневых двигателей

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 56,5 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам в часах Номер семестра 6
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	51,5	51,5

Решение газодинамических проблемно- ориентированных задач	20	20
Обработка результатов и оформление лабораторных работ	31,5	31.5
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по			
пописио	Наименование разделов дисциплины	видам в часах			
раздела		Всего	Л	П3	ЛР
1	Введение	2	2	0	0
2	Основные понятия газовой динамики	6	6	0	0
3	Основные уравнения динамики движения газа	12	6	0	6
4	Основные модели и параметры состояния потока	4	4	0	0
5	Уравнение количества движения газового потока и его разновидности	10	6	0	4
6	Движение газового потока в соплах	8	4	0	4
7	Движение газового потока в диффузорах	6	4	0	2

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		Место дисциплины в моторостроении, обзор целей и задач, обзор инженерных методов исследования газовых потоков	2
2-4	,	Термодинамические параметры газового потока. Задание поля скоростей, линия тока, поверхность тока, элементарная струйка	6
5-7	3	Уравнение неразрывности. Уравнение энергии. Уравнение энергии в тепловой форме. Уравнение энергии для неподвижного газа. Уравнение Бернулли. Интеграл Бернулли и его решение. Связь показателей политропы и адиабаты	6
8-10	4	Основные модели потока. Полная и статическая температура. Полное и статическое давление. Характерные скорости потока: максимальная, скорость звука, критическая и связь между ними. Число М как критерий сжимаемости и подобия. Газодинамические функции и их использование.	4
11-13	5	Уравнение количества движения для цилиндрической трубы. Потери на внезапное расширение. Уравнение количества движения в полных импульсах. Газодинамические функции в полных импульсах. Уравнение моментов количества движения. Уравнение для компрессора, турбины и радиальных каналов	6
14-16	n	Ускорение газового потока. Идеальное сопло и его режимы работы. Реальное сопло	4
17-18	,	Замедление газового потока. Диффузор и его основные характеристики: сопротивление диффузора, КПД диффузора. Степень повышения давления	4

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1-3	•	Исследование движения газового потока в каналах различной конфигурации и формы поперечного сечения	6
4	5	Оценка параметров потока газа в цилиндрической трубе	2
5	5	Оценка параметров потока газа в пластинчатом дросселе	1
6	5	Оценка параметров потока газа в клапанном дросселе	1
7-8	6	Оценка параметров потока при движении в соплах	4
9	7	Оценка параметров потока при движении в диффузорах	2

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Решение газодинамических проблемно- ориентированных задач		6	20		
Обработка результатов и оформление лабораторных работ	edu.susu.ru	6	31,5		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	6	Текущий контроль	Тестовые задания	1		Письменный опрос (тестирование) проводится на 8-й неделе семестра. Обучающимся предлагаются тестовые задания с 1 по 8-е. Время, отведенное на подготовку - 20 минут. При оценивании результатов мероприятия используется балльнорейтинговая система оценива-ния результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Правильный ответ на вопрос соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов.	экзамен

						Максимальное количество баллов — 10. Весовой коэффициент мероприятия — 1. Зачтено: рейтинг обучающегося за мероприятие больше или равно 60 %. Не зачтено: рейтинг обучающегося за мероприятие менее 60 %	
2	6	Проме- жуточная аттестация	Промежуточная аттестация	-	10	Письменный опрос (тестирование) проводится на 4-й неделе семестра. Время, отведенное на подготовку - 20 минут. При оценивании результатов мероприятия используется балльнорейтинговая система оценива-ния результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Правильный ответ на вопрос соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов – 10. Весовой коэффициент мероприятия – 1. Зачтено: рейтинг обучающегося за мероприятие больше или равно 60 %. Не зачтено: рейтинг обучающегося за мероприятие менее 60 %	экзамен
3	6	Текущий контроль	Тестовые задания	1	3	Письменный опрос (тестирование) проводится на 10-й неделе семестра. Обучающимся предлагаются тестовые задания с 9 по 16-е. Время, отведенное на подготовку - 20 минут. При оценивании результатов мероприятия используется балльнорейтинговая система оценива-ния результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Правильный ответ на вопрос соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов – 10. Весовой коэффициент мероприятия – 1. Зачтено: рейтинг обучающегося за мероприятие больше или равно 60 %. Не зачтено: рейтинг обучающегося за мероприятие менее 60 %	экзамен
4	6	Текущий контроль	Тестовые задания	1	8	Письменный опрос (тестирование) проводится на 8-й неделе семестра. Обучающимся предлагаются тестовые задания с 17 по 24-е. Время, отведенное на подготовку - 20 минут. При оценивании результатов мероприятия используется балльно-	экзамен

	рейтинговая система оценива-ния результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Правильный ответ на вопрос соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов – 10. Весовой коэффициент мероприятия – 1. Зачтено: рейтинг обучающегося за мероприятие больше или равно 60 %. Не зачтено: рейтинг обучающегося за	
	мероприятие менее 60 %	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	I I THEKTOOULOM HIVOIV I JAHEE CTVIIEUT MOVET HOUCTVIIATL K	В соответствии с пп. 2.5, 2.6 Положения

используется пятибалльная шкала. 2. Студент имеет возможность набрать 1,5 балла за предоставленное правильное решение задачи ИЛИ предоставленный правильный ответ к задаче. 3. Студент имеет возможность набрать 2,5 балла за предоставленное правильное решение задачи И предоставленный правильный ответ к задаче. 4. При получении дробной суммы баллов по результатам проверки решения двух задач округление осуществляется в большую сторону.

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения			
		1	2	3 4
IIIK-I	Умеет: Использовать основные уравнения газовой динамики для решения прикладных задач двигателестроения			+
ПК-1	Имеет практический опыт: Применения в решении прикладных задач методов моделирования газовых потоков в ДВС; теоретических основ рабочих процессов в энергетических машинах, аппаратах и установках			+
ПК-5	ІК-5 Знает: Теоретические основы газовой динамики		+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Абрамович, Г. Н. Прикладная газовая динамика Ч. 1 В 2 ч. 5-е изд., перераб. и доп. М.: Наука, 1991. 597 с. ил.
- 2. Клиначева Н. Л. Газовая динамика: учеб. пособие по направлению "Механика и мат. моделирование" и др. / Н. Л. Клиначева, Е. С. Шестаковская; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2020. 100, [1] с.: ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000569670

б) дополнительная литература:

- 1. Драгунов, Г. Д. ЮУрГУ Основы газовой динамики Текст лекций ЧПИ им. Ленинского комсомола. Каф. Двигатели внутрен. сгорания. Челябинск, 1988. 60 с. ил.
- 2. Газовая динамика: Избранное: В 2 т. . Т. 2 / Ред.-сост. А. Н. Крайко, А. Б. Ватажин, А. Н. Секундов; Под общ. ред. А. Н. Крайко. М. : Физматлит, 2001. 761,[4] с. : ил.
- 3. Газовая динамика: Избранное: Сб. ст.: В 2 т. . Т. 1 / Ред.-сост. А. И. Крайко (отв.) и др.. М.: Физматлит, 2000. 720 с.: портр.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:

- 1. Драгунов Г.Д. Основы газовой динамики: конспект лекций. Челябинск, ЧПИ, 1988. 76 с.
- 2. Лазарев В.Е. Газовая динамика: учебное пособие. Челябинск: $\mbox{ ЮУр}\Gamma\mbox{У}, 1999. 100 \mbox{ c}.$

из них: учебно-методическое обеспечение самостоятельной работы студента:

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции 123 (2)		Проекционное оборудование, макеты двигателей в разрезе
Лабораторные 124 занятия (2)		Лабораторный комплекс "Газовая динамика" (произв. ЮУрГУ, НПО "Учебная техника и технологии")