ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота ПОУБГУ ПОЖЛО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Григорьем М. А. Пользователь: grigorev ma

М. А. Григорьев

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П2.17.02 Автономные инверторы напряжения и тока **для направления** 13.03.02 Электроэнергетика и электротехника **уровень** Бакалавриат

профиль подготовки Электропривод и автоматизация промышленных установок и технологических комплексов

форма обучения очная

кафедра-разработчик Электропривод, мехатроника и электромеханика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утверждённым приказом Минобрнауки от 28.02.2018 № 144

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, д.техн.н., доц., профессор

Электронный локумент, подписанный ПЭП, хранится в системе электронного домументооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дудкин М. М. Пользователь: dudkinmm [Пала подписания: 2908.2024]

М. А. Григорьев

М. М. Дудкин

1. Цели и задачи дисциплины

Основная цель дисциплины состоит в том, чтобы сформировать навыки: чтения схем автономных инверторов; анализа электромагнитных процессов автономных инверторов; экспериментального исследования электромагнитных процессов в автономных преобразователях. Для осуществления поставленной цели необходимо выполнить следующие задачи: изучить принципы действия, характеристики, параметры, основы расчета, электромагнитные процессы в автономных инверторах; проводить экспериментальные исследования по заданной методике автономных преобразователей и источников питания, обрабатывать результаты экспериментов и оформлять отчет.

Краткое содержание дисциплины

В курсе изучаются автономные инверторы напряжения и тока для регулируемых электроприводов переменного тока и различных технологических установок, а также активные выпрямители напряжения на их основе. Однофазные и трехфазные автономные инверторы напряжения (АИН), фильтры переменного напряжения, способы формирования выходного напряжения в АИН на основе различных законов модуляции, трехфазный трехуровневый АИН с пространственно-векторной ШИМ, однофазные и трехфазные автономные инверторы тока (АИТ), пространственновекторная ШИМ в трехфазном АИТ. Схемы питания автономных инверторов от сети переменного тока: однофазные и многофазные неуправляемые выпрямители, сглаживающие фильтры, управляемые выпрямители трехфазного тока, однофазные и трехфазные активные выпрямители напряжения. Большое внимание при изучении курса уделяется лабораторно-практическим занятиям, на которых студенты закрепляют теоретические знания, полученные на лекционных занятиях. В течение семестра студенты выполняют лабораторные работы и защищают их. Вид промежуточной аттестации — экзамен.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
OTI BO (ROMIETERIAM)	Знает: Принципы работы, основные понятия,
	определения, технические характеристики и
	классификацию силовых полупроводниковых
	преобразователей, ориентированных на
ПК-1 Способен участвовать в проектировании	преобразование постоянного тока в переменный.
объектов профессиональной деятельности	Умеет: Рассчитывать параметры элементов
	силовых схем автономных инверторов.
	Имеет практический опыт: Способностью
	разрабатывать простые силовые схемы
	автономных инверторов.
	Знает: Основы расчета схем автономных
ПИ 2 Старабан имаатрарату в маунуус	инверторов
ПК-3 Способен участвовать в научно-	Умеет: Выполнять экспериментальные
исследовательской работе по видам профессиональной деятельности	исследования по заданной методике,
профессиональной деятельности	обрабатывать результаты экспериментов и
	оформлять отчет

Имеет практический опыт: Исследования
объектов силовой электроники

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
	Микропроцессорные системы управления
	электроприводов,
Физические основы электроники,	Электрический привод,
Введение в направление,	Моделирование электронных устройств,
Практикум по виду профессиональной	Преобразовательная техника,
деятельности	Системы управления электроприводов,
	Методы автоматизированного проектирования
	электроприводов

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: Принцип действия диодов, транзисторов,
	тиристоров, интегральных микросхем, их
	характеристики и параметры; основы расчета
	простейших схем силовых преобразователей и
	аналоговых электронных усилителей Умеет:
	Использовать методы анализа линейных и
	нелинейных электрических цепей для расчета
	простейших схем силовых преобразователей на
	основе полупроводниковых приборов. Выбирать
Физические основы электроники	элементы электронных схем для решения
I non recinic concess of extraordinary	поставленной задачи; анализировать и описывать
	физические процессы, протекающие в
	полупроводниковых приборах. Имеет
	практический опыт: Моделирования простейших
	схем силовых преобразователей и аналоговых
	электронных усилителей. Экспериментального
	исследования характеристик и правильного
	выбора полупроводниковых приборов;
	способами управления электронными
	устройствами.
	Знает: Область профессиональной деятельности
	выпускника данного профиля. Основные
	мировые тенденции в развитии регулируемого
	электропривода., Определение термина
	электропривод, перечень дисциплин, изучаемых
	студентами при освоении данной специальности;
Введение в направление	как математика, физика, теоретическая механика,
	связаны со специальными дисциплинами
	изучаемыми по данному направлению., Общие
	представления о науке в области
	электроэнергетики и электротехники. Умеет:
	Оценить насколько то или иное промышленное
	решение соотносится с современным уровнем

	развития технологии, Установить связь между техническими проблемами и фундаментальными законами науки, найти необходимую информацию по проблеме или способу ее решения., Выполнять эксперименты по заданным методикам. Имеет практический опыт: Решения практических задач, основанных на школьных курсах математики и физики, Решения простых задач, и поиска необходимой информации., Поиска информации с использованием компьютерной техники и информационных
	технологий.
Практикум по виду профессиональной деятельности	Знает: Структуру распределения обязанностей при проектировании объектов профессиональной деятельности в составе групп., Основные программные средства для проектирования объектов профессиональной деятельности в сфере электроэнергетики и электротехники. Умеет: Реализовывать роли генератора идей, лидера и исполнителя в рамках проектной деятельности., Составлять конструкторскую документацию при проектировании устройств. Имеет практический опыт: Проектирования объектов профессиональной деятельности в сфере электроэнергетики и электротехники в программным обеспечением для проектирования объектов профессиональной деятельности в сфере электроэнергетики и электротехники.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 5 з.е., 180 ч., 92,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 5
Общая трудоёмкость дисциплины	180	180
Аудиторные занятия:	80	80
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	32	32
Самостоятельная работа (СРС)	87,5	87,5
Подготовка к лабораторным работам	15	15
Оформление отчетов по лабораторным работам	30	30
Подготовка к защите по лабораторным работам	15	15
Подготовка к экзамену	27,5	27.5
Консультации и промежуточная аттестация	12,5	12,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в			
	Наименование разделов дисциплины	часах			
раздела		Всего	Л	П3	ЛР
1 1	Однофазные автономные инверторы напряжения и тока	20	8	4	8
2	Трехфазные автономные инверторы напряжения и тока	28	12	4	12
3	Источники питания для автономных инверторов	32	12	8	12

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Классификация автономных инверторов. Область их применения. Цели и задачи курса. Однофазный мостовой и полумостовой автономные инверторы напряжения (АИН): временные диаграммы токов и напряжений, основные соотношения, качество выходного напряжения, преимущества и недостатки. Однофазный мостовой АИН с ШИР на основе фазового сдвига импульсов управления: временные диаграммы токов и напряжений совместно с системой управления, регулировочная характеристика, качество выходного напряжения, преимущества и недостатки.	2
2	1	Законы импульсной модуляции. Двухполярная и однополярная ШИМ в однофазном мостовом АИН: временные диаграммы токов и напряжений совместно с системой управления, основные соотношения, регулировочная характеристика, спектр выходного напряжения, преимущества и недостатки.	2
3	1	Метод гистерезисной или «дельта»-модуляции в однофазном полумостовом АИН: временные диаграммы токов и напряжений совместно с системой управления, спектр выходного напряжения, преимущества и недостатки. Фильтрация выходного напряжения в однофазных АИН: схема Г-образного LC-фильтра, его частотная характеристика, расчет параметров фильтра.	2
4	1	Однофазный автономный инвертор тока (АИТ) на полностью управляемых ключах: временные диаграммы токов и напряжений при различных параметрах нагрузки, схема замещения, векторная диаграмма напряжений и токов, внешняя характеристика, преимущества и недостатки.	2
5	2	Трехфазный мостовой АИН с шестиступенчатой формой фазного напряжения: временные диаграммы токов и напряжений совместно с системой управления, основные соотношения, качество выходного напряжения, преимущества и недостатки. Синусоидальная ШИМ в трехфазном мостовом АИН: временные диаграммы токов и напряжений совместно с системой управления, основные соотношения, регулировочная характеристика.	2
6	2	Пространственно-векторная ШИМ в трехфазном мостовом АИН: теория пространственного вектора, таблица базовых векторов, выражения расчета коэффициентов модуляции, функциональная схема микропроцессорной системы управления, временные диаграммы напряжений совместно с системой управления, основные соотношения, регулировочная характеристика. Преимущества и недостатки пространственно-векторной ШИМ по сравнению с синусоидальной ШИМ.	2
7, 8	2	Пространственно-векторная ШИМ в трехфазном трехуровневом АИН: силовая схема, комбинации силовых ключей для стойки фазы А, формирование базовых векторов для первого сектора, таблица базовых	4

		векторов, формирование пространственного вектора напряжения во всех сегментах первого сектора, выражения расчета коэффициентов модуляции, функциональная схема микропроцессорной системы управления, временные диаграммы напряжений совместно с системой управления, регулировочная и спектральные характеристики. Сравнение трехфазного двухуровневого (мостового) и трехуровневого АИН.	
9	2	Внешние и энергетические характеристики трехфазных мостовых АИН с ШИМ. Трехфазный мостовой АИТ на полностью управляемых ключах: временные диаграммы токов и напряжений совместно с системой управления, основные соотношения, преимущества и недостатки.	2
10	2	Пространственно-векторная ШИМ в трехфазном мостовом АИТ: теория пространственного вектора, таблица базовых векторов, выражения расчета коэффициентов модуляции, временные диаграммы токов и напряжений совместно с системой управления, основные соотношения, регулировочная характеристика.	2
11	3	Однофазная мостовая схема выпрямления на диодах при активной нагрузке, основные соотношения. Сглаживающие фильтры: емкостной, индуктивный, Г-образный. Внешние характеристики однофазного выпрямителя со сглаживающими фильтрами.	2
12	3	Трехфазный мостовой неуправляемый выпрямитель при активно- индуктивной нагрузке, основные соотношения. Трехфазный мостовой неуправляемый выпрямитель с емкостным фильтром: временные диаграммы токов и напряжений в прерывистом и непрерывном режимах, выбор входного реактора на входе выпрямителя, его назначение, спектральные и энергетические характеристики.	2
13	3	Управляемые выпрямители тока: временные диаграммы токов и напряжений на примере трехфазной нулевой схемы в непрерывном, прерывистом и граничном режимах при активной и активно-индуктивной нагрузках, идеальные регулировочные характеристики. Коммутационные процессы в управляемых выпрямителях тока на примере трехфазной нулевой схемы. Внешние и регулировочные характеристики управляемых выпрямителей тока в непрерывном режиме.	2
14	3	Переход от выпрямительного к инверторному режиму на примере однофазной мостовой схемы. Векторная диаграмма входного напряжения и тока. Регулировочные и внешние характеристики ведомого инвертора, выполненного по трехфазной мостовой схемы в непрерывном и прерывистом режимах. Условия устойчивой работы инвертора, ограничительная характеристика.	2
15	3	Однофазный мостовой активный выпрямитель напряжения (ABH): временные диаграммы напряжений и токов в выпрямительном и инверторном режимах при симметричном управлении силовых ключей, схемы замещения на этапах коммутации, выражение для частоты переключения силовых ключей. Система управления однофазного мостового ABH со стабилизацией выпрямленного напряжения на основе релейно-токового регулирования.	2
16	3	Трехфазный мостовой АВН с векторной системой управления. abc, dq, альфабетта системы преобразования координат. Функциональная схема АВН с векторной системой управления: режимы потребления (генерации) только активной мощности, режим источника реактивного тока и генерации реактивной мощности.	2

5.2. Практические занятия, семинары

No	$N_{\underline{0}}$	Наименование или краткое содержание практического занятия, семинара	Кол-
занятия	раздела		во

			часов
1	1	Построение временных диаграмм напряжений и токов, расчет внешних и энергетических характеристик однофазного АИН с одноимпульсной ШИР, двухполярной и однополярной ШИМ.	2
2	1	Разновидности схем автономных инверторов тока (параллельный, последовательный). Построение временных диаграмм и расчет внешних характеристик инвертора.	2
3	2	Построение временных диаграмм токов и напряжений для трехфазного мостового автономного инвертора напряжения и тока с пространственновекторной широтно-импульсной модуляцией.	2
4	2	Построение временных диаграмм токов и напряжений для трехфазного трехуровневого АИН с пространственно-векторной широтно-импульсной модуляцией для различных секторов и сегментов.	2
5	3	Построение временных диаграмм сигналов для однофазной мостовой схемы выпрямления (неуправляемая и управляемая) при активной, активноиндуктивной и емкостной нагрузках. Переход от непрерывного в граничный и прерывистый режимы работы. Влияние угла коммутации на временные диаграммы.	2
6	3	Построение временных диаграмм сигналов для трехфазной нулевой схемы выпрямления (неуправляемая и управляемая) при активно-индуктивной и активно-индуктивной с противо-ЭДС нагрузках. Переход от непрерывного в граничный и прерывистый режимы работы. Влияние угла коммутации на временные диаграммы.	2
7	3	Построение временных диаграмм сигналов для трехфазной мостовой схемы выпрямления (неуправляемая и управляемая) в непрерывном режиме без и с учетом коммутации в выпрямительном и инверторном режимах.	2
8	3	Построение временных диаграмм токов и напряжений для однофазного и трехфазного активных выпрямителей напряжения с релейно-токовой и пространственно-векторной ШИМ.	2

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1, 2	1	Исследование однофазного автономного инвертора напряжения с различными методами регулирования и выходного LC-фильтра в программе MatLab+Simulink. Изучение электромагнитных процессов, регулировочных, внешних и энергетических характеристик однофазного автономного инвертора напряжения (АИН) с одноимпульсным широтно-импульсным регулированием, двухполярной и однополярной широтно-импульсной модуляцией (ШИМ) с законом управления U/f = const при работе на активно-индуктивную нагрузку, а также выходного LC-фильтра.	4
3, 4	1	Исследование однофазного параллельного автономного инвертора тока в программе MatLab+Simulink. Изучение электромагнитных процессов, внешних, регулировочных и энергетических характеристик параллельного автономного инвертора тока (АИТ) при активной нагрузке.	4
5, 6		Исследование трехфазного мостового автономного инвертора напряжения (АИН) с различными способами импульсной модуляции в программе MatLab+Simulink. Исследование электромагнитных процессов, характеристик и энергетических показателей трехфазного мостового АИН, при трех способах импульсной модуляции: синусоидальная и пространственно-векторная широтно-импульсная модуляция (ШИМ), релейно-токовое управление.	4

7, 8	2	Исследование трехфазного трехуровневого автономного инвертора напряжения с пространственно-векторной широтно-импульсной модуляцией в программе MatLab+Simulink. Изучение электромагнитных процессов, регулировочных, внешних и энергетических характеристик трехфазного трехуровневого автономного инвертора напряжения (АИН) с пространственно-векторной широтно-импульсной модуляцией (ШИМ) и законом управления U/f = const при работе на активно-индуктивную нагрузку с ПЭДС (имитация асинхронного электродвигателя).	4
9, 10	2	Исследование трехфазного мостового автономного инвертора тока с пространственно-векторной широтно-импульсной модуляцией в программе MatLab+Simulink. Изучение электромагнитных процессов, регулировочных, внешних и энергетических характеристик трехфазного мостового автономного инвертора тока (АИТ) с пространственно-векторной широтно-импульсной модуляцией (ШИМ) и законом управления U/f = const при работе на активно-индуктивную нагрузку с ПЭДС (имитация асинхронного электродвигателя).	4
11, 12	3	Исследование трехфазного мостового неуправляемого выпрямителя с емкостным фильтром в программе MatLab+Simulink. Изучение электромагнитных процессов, характеристик и энергетических показателей трехфазного мостового неуправляемого выпрямителя с емкостным фильтром на выходе. Исследование влияния преобразователя на питающую сеть.	4
13, 14	3	Исследование трехфазного управляемого выпрямителя тока в режимах выпрямления и инвертирования в программе MatLab+Simulink. Изучение электромагнитных процессов, характеристик и энергетических показателей трехфазного управляемого выпрямителя тока, выполненного по мостовой схеме, в режимах выпрямления и инвертирования при работе на активно-индуктивную нагрузку с противо-ЭДС. Исследование влияния преобразователя на питающую сеть.	4
15, 16	3	Исследование трехфазного активного выпрямителя напряжения с векторной системой управления в программе MatLab+Simulink. Изучение электромагнитных процессов, характеристик и энергетических показателей трехфазного активного выпрямителя напряжения с векторной системой управления в режимах выпрямления и инвертирования.	4

5.4. Самостоятельная работа студента

F	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка к лабораторным работам	ПУМД: [Осн. лит., 1], с. 346-369, с. 393-435, с. 450-460, с. 513-518, с. 211-261; [Осн. лит., 2], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 3], с. 438-451, с. 287-306, с. 315-353; [Доп. лит., 1], с. 132-164, с. 12-73; [Доп. лит., 2], с. 303-306, с. 189-205, с. 212-237; ЭУМД: [Осн. лит., 1], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 2], с. 57-72, с. 100-128; [Доп. лит., 3], с. 11-237.	5	15
Оформление отчетов по лабораторным работам	ПУМД: [Осн. лит., 1], с. 346-369, с. 393-435, с. 450-460, с. 513-518, с. 211-261; [Осн. лит., 2], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 3], с. 438-451, с. 287-306, с. 315-353; [Доп. лит., 1], с.	5	30

	132-164, с. 12-73; [Доп. лит., 2], с. 303-306, с. 189-205, с. 212-237; ЭУМД: [Осн. лит., 1], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 2], с. 57-72, с. 100-128; [Доп. лит., 3], с. 11-237; УМО для СРС [1], с. 19-25, с.28-33; Профессиональные базы данных и информационные справочные системы: [1], [2]; ПО: [1], [2].		
Подготовка к защите по лабораторным работам	ПУМД: [Осн. лит., 1], с. 346-369, с. 393-435, с. 450-460, с. 513-518, с. 211-261; [Осн. лит., 2], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 3], с. 438-451, с. 287-306, с. 315-353; [Доп. лит., 1], с. 132-164, с. 12-73; [Доп. лит., 2], с. 303-306, с. 189-205, с. 212-237; ЭУМД: [Осн. лит., 1], с. 237-303, с. 97-121, с. 136-140, с. 325-337; [Осн. лит., 2], с. 57-72, с. 100-128.	5	15
Подготовка к экзамену	ПУМД: [Осн. лит., 1], с. 346-383, с. 393-435, с. 450-460, с. 513-518, с. 211-277; [Осн. лит., 2], с. 226-303, с. 97-154, с. 325-337; [Осн. лит., 3], с. 438-467, с. 287-306, с. 315-365; [Доп. лит., 1], с. 132-174, с. 12-103; [Доп. лит., 2], с. 303-306, с. 189-205, с. 212-237; ЭУМД: [Осн. лит., 1], с. 226-303, с. 97-154, с. 325-337; [Осн. лит., 2], с. 57-72, с. 100-128; УМО для СРС [1], с. 19-25, с.28-33; Отечественные и зарубежные журналы по дисциплине: [1], [2], [3].	5	27,5

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	5	Текущий контроль	Отчет ЛР1	0,1	10	По лабораторной работе 1 «Исследование однофазного автономного инвертора напряжения с различными методами регулирования и выходного LC-фильтра» (контроль раздела 1) студентом индивидуально предоставляется оформленный отчет в установленных срок 2 недели. Оценивается качество оформления, правильность предварительно выполненного домашнего задания,	экзамен

экспериментальных данных, графиков, временных диаграмм, выводов и срок выполнения отчета. Общий балл при оценке складывается из следующих показателей. 1. Качество оформления (оценивается оформление работы согласно требованиям ГОСТ, в том числе наличие подрисуночных надписей, названия таблиц, координатных осей, масштабов, подписей сигналов на временных диаграммах): - качество оформление работы соответствует требованиям – 1 балл; - качество оформление работы частично соответствует требованиям – 0,5 балла; - качество оформление работы не соответствует требованиям – 0 баллов. 2. Правильность выполнения предварительного домашнего задания: - правильно выполненное предварительное домашнее задание – 3 балла; - предварительное домашнее задание выполнено правильно на 75% - 2,25 балла; - предварительное домашнее задание выполнено правильно на 50% – 1,5 балла; - предварительное домашнее задание выполнено правильно на 25% - 0.75 балла; - предварительное домашнее задание выполнено не верно – 0 баллов. 3. Правильность экспериментальных данных: - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно – 4 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 75% – 3 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 50% – 2 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 25% – 1 балл; - экспериментальные данные сняты не верно, большая часть графиков или временных диаграмм не построена – 0 баллов. 4. Правильность выводов: - выводы написаны самостоятельно и логически-обоснованы – 2 балла: - выводы написаны самостоятельно и логически-обоснованы на 75% – 1,5 балла; - выводы написаны самостоятельно и логически-обоснованы на 50% – 1,0 балл; - выводы написаны самостоятельно и логически-обоснованы на 25% – 0,5 балла;

			I	T	I	1	1
						- выводы написаны не самостоятельно или	
						неверные – 0 баллов.	
						5. Срок выполнения отчета:	
						- за каждую просроченную неделю	
						результирующий балл за работу	
						уменьшается на 1 балл.	
						По лабораторной работе 2 «Исследование	
						трехфазного мостового автономного	
						инвертора напряжения с различными	
						способами импульсной модуляции»	
						(контроль раздела 2) студентом	
						индивидуально предоставляется	
						оформленный отчет в установленных срок	
						2 недели. Оценивается качество	
						оформления, правильность предварительно	
						выполненного домашнего задания,	
						экспериментальных данных, графиков,	
						временных диаграмм, выводов и срок	
						выполнения отчета.	
						Общий балл при оценке складывается из	
						следующих показателей.	
						1. Качество оформления (оценивается	
						оформление работы согласно требованиям	
						ГОСТ, в том числе наличие подрисуночных	
						надписей, названия таблиц, координатных	
						осей, масштабов, подписей сигналов на	
						временных диаграммах):	
						- качество оформление работы	
						соответствует требованиям – 1 балл;	
						- качество оформление работы частично	
2	5	Текущий	Отчет ЛР2	0,1	10	соответствует требованиям – 0,5 балла;	экзамен
		контроль				- качество оформление работы не	
						соответствует требованиям – 0 баллов.	
						2. Правильность выполнения	
						предварительного домашнего задания:	
						- правильно выполненное предварительное	
						домашнее задание – 3 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 75% – 2,25 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 50% – 1,5 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 25% – 0,75 балла;	
						- предварительное домашнее задание	
						выполнено не верно – 0 баллов.	
						3. Правильность экспериментальных	
						данных:	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно – 4 балла;	
1						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 75% – 3 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 50% – 2 балла;	

	1		ı	1	ı		
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 25% – 1 балл;	
						- экспериментальные данные сняты не	
						верно, большая часть графиков или	
						временных диаграмм не построена – 0	
						баллов.	
						4. Правильность выводов:	
						- выводы написаны самостоятельно и	
						логически-обоснованы – 2 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 75% – 1,5 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 50% – 1,0 балл;	
						- выводы написаны самостоятельно и логически-обоснованы на 25% – 0,5 балла;	
						- выводы написаны не самостоятельно или	
						неверные – 0 баллов.	
						5. Срок выполнения отчета:	
						- за каждую просроченную неделю	
						результирующий балл за работу	
						уменьшается на 1 балл.	
				1		По лабораторной работе 3 «Исследование	
						трехфазного трехуровневого автономного	
						инвертора напряжения с пространственно-	
						векторной широтно-импульсной	
						модуляцией» (контроль раздела 2)	
						студентом индивидуально предоставляется	
						оформленный отчет в установленных срок	
						2 недели. Оценивается качество	
						оформления, правильность предварительно	
						выполненного домашнего задания,	
						экспериментальных данных, графиков,	
						временных диаграмм, выводов и срок	
						выполнения отчета.	
						Общий балл при оценке складывается из	
						следующих показателей.	
		_				1. Качество оформления (оценивается	
3	5	Текущий	Отчет ЛР3	0,1	10	оформление работы согласно требованиям	экзамен
		контроль		-,-	_ ~	ГОСТ, в том числе наличие подрисуночных	
						надписей, названия таблиц, координатных	
						осей, масштабов, подписей сигналов на	
						временных диаграммах):	
						- качество оформление работы	
						соответствует требованиям – 1 балл;	
						- качество оформление работы частично	
						соответствует требованиям – 0,5 балла;	
						- качество оформление работы не	
						соответствует требованиям – 0 баллов.	
						2. Правильность выполнения	
						предварительного домашнего задания:	
						- правильно выполненное предварительное домашнее задание – 3 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 75% – 2,25 балла;	
						- предварительное домашнее задание	
			I	1	<u> </u>	тредварительное домашие задание	

			I		1	T	1
						выполнено правильно на 50% – 1,5 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 25% – 0,75 балла;	
						- предварительное домашнее задание	
						выполнено не верно – 0 баллов.	
						3. Правильность экспериментальных	
						данных:	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно – 4 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 75% – 3 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 50% – 2 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 25% – 1 балл;	
						- экспериментальные данные сняты не	
						верно, большая часть графиков или	
						1 1	
						временных диаграмм не построена – 0 баллов.	
						4. Правильность выводов:	
						- выводы написаны самостоятельно и	
						логически-обоснованы – 2 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 75% – 1,5 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 50% – 1,0 балл;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 25% – 0,5 балла;	
						- выводы написаны не самостоятельно или	
						неверные – 0 баллов.	
						5. Срок выполнения отчета:	
						- за каждую просроченную неделю	
						результирующий балл за работу	
						уменьшается на 1 балл.	
						По лабораторной работе 4 «Исследование	
						трехфазного мостового неуправляемого	
						выпрямителя с емкостным фильтром»	
						(контроль раздела 3) студентом	
						индивидуально предоставляется	
						оформленный отчет в установленных срок	
						2 недели. Оценивается качество	
						оформления, правильность предварительно	
	_	Текущий	O HD4	0.1	1.0	выполненного домашнего задания,	
4	5	контроль	Отчет ЛР4	0,1	10	экспериментальных данных, графиков,	экзамен
		F 3412				временных диаграмм, выводов и срок	
						выполнения отчета.	
						Общий балл при оценке складывается из	
						следующих показателей.	
						1. Качество оформления (оценивается	
						оформление работы согласно требованиям	
						ГОСТ, в том числе наличие подрисуночных	
			<u> </u>			надписей, названия таблиц, координатных	

		-	T		ı	1	1
						осей, масштабов, подписей сигналов на	
						временных диаграммах):	
						- качество оформление работы	
						соответствует требованиям – 1 балл;	
						- качество оформление работы частично	
						соответствует требованиям – 0,5 балла;	
						- качество оформление работы не	
						соответствует требованиям – 0 баллов.	
						2. Правильность выполнения	
						предварительного домашнего задания:	
						- правильно выполненное предварительное	
						домашнее задание – 3 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 75% – 2,25 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 50% – 1,5 балла;	
						- предварительное домашнее задание	
						выполнено правильно на 25% – 0,75 балла;	
						- предварительное домашнее задание	
						выполнено не верно – 0 баллов.	
						3. Правильность экспериментальных	
						данных:	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно – 4 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 75% – 3 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 50% – 2 балла;	
						- экспериментальные данные, графики,	
						временные диаграммы и расчеты	
						выполнены правильно на 25% – 1 балл;	
						- экспериментальные данные сняты не	
						верно, большая часть графиков или	
						временных диаграмм не построена – 0	
						баллов.	
						оаллов. 4. Правильность выводов:	
						- выводы написаны самостоятельно и	
						логически-обоснованы – 2 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 75% – 1,5 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 50% – 1,0 балл;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 25% – 0,5 балла;	
						- выводы написаны не самостоятельно или	
						неверные – 0 баллов.	
						5. Срок выполнения отчета:	
						- за каждую просроченную неделю	
						результирующий балл за работу	
						уменьшается на 1 балл.	
						По лабораторной работе 5 «Исследование	
5	5	Текущий	Отчет ЛР5	0,1	10	трехфазного активного выпрямителя	экзамен
	5	контроль		0,1	10	напряжения с векторной системой	JAJUNION
			<u> </u>			паприжения с векторной системой	

управления» (контроль раздела 3) студентом индивидуально предоставляется оформленный отчет в установленных срок 2 недели. Оценивается качество оформления, правильность предварительно выполненного домашнего задания, экспериментальных данных, графиков, временных диаграмм, выводов и срок выполнения отчета. Общий балл при оценке складывается из следующих показателей. 1. Качество оформления (оценивается оформление работы согласно требованиям ГОСТ, в том числе наличие подрисуночных надписей, названия таблиц, координатных осей, масштабов, подписей сигналов на временных диаграммах): - качество оформление работы соответствует требованиям – 1 балл; - качество оформление работы частично соответствует требованиям – 0,5 балла; - качество оформление работы не соответствует требованиям – 0 баллов. 2. Правильность выполнения предварительного домашнего задания: - правильно выполненное предварительное домашнее задание – 3 балла; - предварительное домашнее задание выполнено правильно на 75% - 2,25 балла; - предварительное домашнее задание выполнено правильно на 50% – 1,5 балла; - предварительное домашнее задание выполнено правильно на 25% – 0,75 балла; - предварительное домашнее задание выполнено не верно – 0 баллов. 3. Правильность экспериментальных данных: - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно – 4 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 75% – 3 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 50% – 2 балла; - экспериментальные данные, графики, временные диаграммы и расчеты выполнены правильно на 25% – 1 балл; - экспериментальные данные сняты не верно, большая часть графиков или временных диаграмм не построена – 0 баллов. 4. Правильность выводов: - выводы написаны самостоятельно и логически-обоснованы – 2 балла;

			T	1			
						- выводы написаны самостоятельно и	
						логически-обоснованы на 75% – 1,5 балла;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 50% – 1,0 балл;	
						- выводы написаны самостоятельно и	
						логически-обоснованы на 25% – 0,5 балла;	
						- выводы написаны не самостоятельно или	
						неверные – 0 баллов.	
						5. Срок выполнения отчета:	
						- за каждую просроченную неделю	
						результирующий балл за работу	
						уменьшается на 1 балл.	
						Защита лабораторной работы 1	
						«Исследование однофазного автономного	
						инвертора напряжения с различными	
						методами регулирования и выходного LC-	
						фильтра» (контроль раздела 1) проводится	
						в форме компьютерного тестирования	
						после выполнения работы. Тест состоит из	
						10 вопросов, позволяющих оценить знания	
						студента по теме лабораторной работы. На	
		Т				ответы отводится 15 минут. Количество	
6	5	Текущий	Защита ЛР1	0,1	10	попыток 1.	экзамен
		контроль	·			- Правильный ответ на вопрос – 1 балл.	
						- Частично правильный ответ на вопрос –	
						от 0,25 до 0,75 балла в случае 4-х	
						правильных ответов.	
						- Частично правильный ответ на вопрос –	
						от 0,33 до 0,66 балла в случае 3-х	
						правильных ответов.	
						- Частично правильный ответ на вопрос –	
						0,5 балла в случае 2-х правильных ответов.	
						- Неправильный ответ на вопрос – 0 баллов.	
						Защита лабораторной работы 2	
						«Исследование трехфазного мостового	
						автономного инвертора напряжения с	
						различными способами импульсной	
						модуляции» (контроль раздела 2)	
						проводится в форме компьютерного	
						тестирования после выполнения работы.	
						Тест состоит из 10 вопросов, позволяющих	
			1			оценить знания студента по теме	
7	_	Текущий	D HD2	0.1	1.0	лабораторной работы. На ответы отводится	
7	5	контроль	Защита ЛР2	0,1	10	15 минут. Количество попыток 1.	экзамен
		1				- Правильный ответ на вопрос – 1 балл.	
						- Частично правильный ответ на вопрос –	
						от 0,25 до 0,75 балла в случае 4-х	
						правильных ответов.	
						- Частично правильный ответ на вопрос –	
						от 0,33 до 0,66 балла в случае 3-х	
						правильных ответов.	
						- Частично правильный ответ на вопрос –	
						0,5 балла в случае 2-х правильных ответов.	
						- Неправильный ответ на вопрос – 0 баллов.	
0	_	Текущий	Эахх ПРЭ	0.1	1.0	Защита лабораторной работы 3	
8	5	контроль	Защита ЛРЗ	U, I	10	«Исследование трехфазного	экзамен
		1	•			<u> </u>	

						трехуровневого автономного инвертора напряжения с пространственно-векторной широтно-импульсной модуляцией» (контроль раздела 2) проводится в форме компьютерного тестирования после выполнения работы. Тест состоит из 10 вопросов, позволяющих оценить знания студента по теме лабораторной работы. На ответы отводится 15 минут. Количество попыток 1. - Правильный ответ на вопрос — 1 балл. - Частично правильный ответ на вопрос — от 0,25 до 0,75 балла в случае 4-х правильных ответов. - Частично правильный ответ на вопрос — от 0,33 до 0,66 балла в случае 3-х правильных ответов. - Частично правильный ответ на вопрос — 0,5 балла в случае 2-х правильных ответов.	
9	5	Текущий контроль	Защита ЛР4	0,1	10	- Неправильный ответ на вопрос — 0 баллов. Защита лабораторной работы 4 «Исследование трехфазного мостового неуправляемого выпрямителя с емкостным фильтром» (контроль раздела 3) проводится в форме компьютерного тестирования после выполнения работы. Тест состоит из 10 вопросов, позволяющих оценить знания студента по теме лабораторной работы. На ответы отводится 15 минут. Количество попыток 1. - Правильный ответ на вопрос — 1 балл. - Частично правильный ответ на вопрос — от 0,25 до 0,75 балла в случае 4-х правильных ответов. - Частично правильный ответ на вопрос — от 0,33 до 0,66 балла в случае 3-х правильных ответов. - Частично правильный ответ на вопрос — 0,5 балла в случае 2-х правильных ответов.	экзамен
10	5	Текущий контроль	Защита ЛР5	0,1	10	- Неправильный ответ на вопрос — 0 баллов. Защита лабораторной работы 5 «Исследование трехфазного активного выпрямителя напряжения с векторной системой управления» (контроль раздела 3) проводится в форме компьютерного тестирования после выполнения работы. Тест состоит из 10 вопросов, позволяющих оценить знания студента по теме лабораторной работы. На ответы отводится 15 минут. Количество попыток 1 Правильный ответ на вопрос — 1 балл Частично правильный ответ на вопрос — от 0,25 до 0,75 балла в случае 4-х правильных ответов Частично правильный ответ на вопрос — от 0,33 до 0,66 балла в случае 3-х	

						правильных ответов Частично правильный ответ на вопрос – 0,5 балла в случае 2-х правильных ответов Неправильный ответ на вопрос – 0 баллов.	
11	5	Бонус	Бонус	-		Студент представляет копии документов, подтверждающие победу или участие в предметных олимпиадах по темам дисциплины, а также публикациях по тематике дисциплины. +15 за победу в олимпиаде международного уровня. +10 за победу в олимпиаде российского уровня. +5 за победу в олимпиаде университетского уровня. +1 за участие в олимпиаде, конкурсе, научно-практической конференции, публикацию статьи по тематике дисциплины за каждое мероприятие.	экзамен
12	5	Проме- жуточная аттестация	Экзамен	-	20	Экзамен проводится в форме компьютерного тестирования. Тест состоит из 20 вопросов, позволяющих оценить знания студентов по всем разделам курса. На ответы отводится 30 минут. - Правильный ответ на вопрос — 1 балл. - Частично правильный ответ на вопрос — от 0,25 до 0,75 балла в случае 4-х правильных ответов. - Частично правильный ответ на вопрос — от 0,33 до 0,66 балла в случае 3-х правильных ответов. - Частично правильный ответ на вопрос — 0,5 балла в случае 2-х правильных ответов. - Неправильный ответ на вопрос — 0 баллов.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	К экзамену допускаются студенты, сдавшие все отчеты по лабораторным работам и прошедшие все тесты по всем разделам курса. Экзамен проводится в форме компьютерного тестирования. В аудитории находится преподаватель и не более 15 человек из числа студентов. Во время проведения экзамена студентам запрещается иметь при себе и использовать средства связи (сотовые телефоны, микрофоны и пр.). Оценка за экзамен рассчитывается по рейтингу обучающегося по дисциплине Rд на основе рейтинга по текущему контролю Rтек плюс бонусные баллы Rб (максимум 15) по формуле: Rд=Rтек+Rб, где Rтек=0,1 KM1+0,1 KM2+0,1 KM3+0,1 KM4+0,1 KM5+0,1 KM6+0,1 KM7+0,1 KM8+0,1 KM9+0,1 KM10 рассчитывается на основе баллов, набранных обучающимся по результатам текущего контроля с учетом весовых коэффициентов. Студент вправе пройти контрольное мероприятие в рамках	В соответствии с пп. 2.5, 2.6 Положения

,	
промежуточной аттестации (экзамен) для улучшения своего	
рейтинга, который будет рассчитываться по формуле: Rд=0,6	
Rтек+0,4 Rпа+Rб, где Rпа – рейтинг за промежуточную	
аттестацию. Шкала перевода рейтинга в оценку: «Отлично» –	
$R_{\mathcal{A}} = 85100\%$; «Хорошо» — $R_{\mathcal{A}} = 7584\%$;	
«Удовлетворительно» – $R_{\rm J} = 6074\%$; «Неудовлетворительно»	
$- R_{\mathcal{I}} = 059\%.$	ļ

6.3. Паспорт фонда оценочных средств

I/ a	Danyar many a fix waxyy a	№ KM											
Компетенции	Результаты обучения		2	3	4	5	6	7	8	9	10	11	12
ПК-1	Знает: Принципы работы, основные понятия, определения, технические характеристики и классификацию силовых полупроводниковых преобразователей, ориентированных на преобразование постоянного тока в переменный.	+	+	+	+		+	+	+	+	+	+	+
ПК-1	Умеет: Рассчитывать параметры элементов силовых схем автономных инверторов.	+	+	+	+	+	+	+	+	+	+	+	+
ПК-1	Имеет практический опыт: Способностью разрабатывать простые силовые схемы автономных инверторов.	+	+	+	+	+	+	+	+	+	+	+	+
ПК-3	Знает: Основы расчета схем автономных инверторов	+	+	+	+	+	+	+	+	+	+	+	+
ПК-3	Умеет: Выполнять экспериментальные исследования по заданной методике, обрабатывать результаты экспериментов и оформлять отчет	+	+	+	+	+						+	+
ПК-3	Имеет практический опыт: Исследования объектов силовой электроники	+	+	+	+	+						+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Розанов, Ю. К. Силовая электроника [Текст] учеб. для вузов по направлени. "Электротехника, электромеханика и электротехнологии" Ю. К. Розанов, М. В. Рябчицкий, А. А. Кваснюк. М.: Издательский дом МЭИ, 2007. 631, [1] с. ил. 25 см.
 - 2. Гельман, М. В. Преобразовательная техника [Текст] учеб. пособие по направлению "Электротехника, электромеханика и электротехнологии" М. В. Гельман, М. М. Дудкин, К. А. Преображенский; Юж.-Урал. гос. ун-т, Каф. Электропривод и автоматизация пром. установок; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2009. 423, [1] с. ил. электрон. версия
 - 3. Забродин, Ю. С. Промышленная электроника [Текст] учеб. пособ. для вузов. М.: Высшая школа, 1982. 496 с. ил.

б) дополнительная литература:

1. Попков, О. 3. Основы преобразовательной техники [Текст] учеб. пособие для вузов по направлению "Электротехника, электромеханика и электротехнологии" О. 3. Попков. - 3-е изд., стер. - М.: Издательский дом МЭИ, 2010. - 199,[1] с. ил.

- 2. Горбачев, Г. Н. Промышленная электроника Учеб. для энерг. спец. вузов Под ред. В. А. Лабунцова. М.: Энергоатомиздат, 1988. 319,[1] с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Электричество теорет. и науч.-практ. журн. Рос. акад. наук, Отдние физ.-техн. проблем энергетики, Федерация энергет. и электротехн. обществ журнал. М., 1996-
 - 2. Вестник Южно-Уральского государственного университета. Серия: Энергетика Юж.-Урал. гос. ун-т; ЮУрГУ журнал. Челябинск: Издательство ЮУрГУ, 2001-
 - 3. Реферативный журнал. Электроника. 23. свод. том Рос. акад. наук, Всерос. ин-т науч. и техн. информ. (ВИНИТИ) реферативный журнал. М.: ВИНИТИ, 1980-
- г) методические указания для студентов по освоению дисциплины:
 - 1. Гельман, М. В. Физические основы электроники. Преобразовательная техника Программа, метод. указания и контрол. задания для студентов-заоч. М. В. Гельман; Юж.-Урал. гос. ун-т, Каф. Электропривод и автоматизация пром. установок; Юж.-Урал. гос. ун-т, Каф. Электропривод и автоматизация пром. установок; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2002. 41, [1] с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Гельман, М. В. Физические основы электроники. Преобразовательная техника Программа, метод. указания и контрол. задания для студентов-заоч. М. В. Гельман; Юж.-Урал. гос. ун-т, Каф. Электропривод и автоматизация пром. установок; Юж.-Урал. гос. ун-т, Каф. Электропривод и автоматизация пром. установок; ЮУрГУ. - Челябинск: Издательство ЮУрГУ, 2002. - 41, [1] с.

Электронная учебно-методическая документация

Nº	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	литература	методические материалы	Преобразовательная техника: учебное пособие / М.В. Гельман, М.М. Дудкин, К.А. Преображенский Челябинск: Издательский Центр ЮУрГУ, 2009 423 с. https://aep.susu.ru/assets/53_pt.pdf
2	литература	методические	Брылина О.Г., Гельман М.В., Дудкин М.М. Силовая электроника: учебное пособие к виртуальным лабораторным работам Челябинск: Издательский Центр ЮУрГУ, 2012 143 c. https://aep.susu.ru/assets/53_ucposobelek_lab_new.pdf
3	Дополнительная литература	оиолиотечная система излательства	Черных, И.В. Моделирование электротехнических устройств в MATLAB. SimPowerSystems и Simulink. [Электронный ресурс] — Электрон. дан. — М.: ДМК Пресс, 2007. — 288 с. http://e.lanbook.com/book/1175

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. Math Works-MATLAB, Simulink R2014b(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

- 1. -База данных ВИНИТИ РАН(бессрочно)
- 2. -Информационные ресурсы ФГУ ФИПС(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий				
Практические занятия и семинары	812-	Мультимедийный класс на 25 мест. Оснащен одним компьютером, проектором с экраном, мультимедийными колонками, имеется выход в интернет. На компьютере установлена операционная система Windows, Microsoft Office, MatLab+Simulink. Аудитория позволяет вести учебным процесс с использованием мультимедийных технологий.				
Лекции	мультимедийный класс на 100 мест. Оснащен одним компьютером, проектором с экраном, мультимедийными колонками, имеется выход в интернет. На компьютере установлена операционная система Windows, Microsoft Office.					
Самостоятельная работа студента	1	Компьютерный класс имеет 25 персональных компьютеров с выходом в Интернет (ресурсы и фонды библиотек). Открытые коммерческие ресурсы для академического доступа. Отечественные и зарубежные журналы по дисциплине. Научно-техническая информация, содержащая сведения о новых типах электротехнических комплексов. Реестры и бюллетени ФИПС (Научно-техническая информация, содержащая сведения о новых типах полупроводниковых приборов).				
Лабораторные занятия	1	Компьютерный класс, имеющий 25 оборудованных рабочих мест. Каждое рабочее место оснащено компьютером. Содержит полный комплект программного обеспечения для моделирования процессов силовых вентильных преобразователей в программе MatLab+Simulink. Имеются необходимые аудиовизуальные средства обучения.				