ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Загребния С. А. Польователь: zgrebinasa (Дата подписания; 26 06 2024

С. А. Загребина

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.16 Дифференциальная геометрия и топология для направления 02.03.01 Математика и компьютерные науки уровень Бакалавриат форма обучения очная кафедра-разработчик Математическое и компьютерное моделирование

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 02.03.01 Математика и компьютерные науки, утверждённым приказом Минобрнауки от 23.08.2017 № 807

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Загребныа С А. Пользовятель: zagrebnas а Пата подписанные 2 бо 6 2024

Электронный документ, подписанный ПЭП, хрынтся в системе заектронного документоборота ПОУБГУ Окано-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ПОВъзволатель: задачечилы Ідпа подписания: 26 06.2024

С. А. Загребина

М. А. Сагадеева

1. Цели и задачи дисциплины

Целями освоения дисциплины «Дифференциальная геометрия и топология» являются: формирование математической культуры студентов, фундаментальная подготовка студентов в области дифференциальной геометрии, овладение современным аппаратом для дальнейшего использования в других областях математического знания и дисциплинах естественнонаучного содержания. Задачи курса: фундаментальная подготовка студентов в области дифференциальной геометрии; овладение современным аппаратом для дальнейшего использования при моделировании различных экономических задач; подготовка к использованию базовых методов дифференциальной геометрии и топологии при исследовании геометрических объектов, возникающих при математическом моделировании различных процессов.

Краткое содержание дисциплины

Геометрические объекты: кривые, способы задания, кривизна и кручение пространственных кривых, формулы Френе, натуральное уравнение кривой. Поверхности: способы задания поверхностей, координаты на поверхности, касательная плоскость, квадратичная форма поверхности, кривизна, геодезические и их свойства. Многомерные геометрические объекты: проективное пространство, аффинная карта проективного пространства, модели проективных пространств малой размерности, метрические группы.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ОПК-1 Способен консультировать и использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики в профессиональной деятельности	Знает: основные понятия и методы дифференциальных уравнений, дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики Умеет: применять и обосновывать выбранные методы дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач Имеет практический опыт: использование методов дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
1.О.11 Дополнительные главы математического	
анализа,	Uо протиомограния
1.О.12 Комплексный анализ,	Не предусмотрены
1.О.10 Математический анализ,	

1.О.21 Дискретная математика и теория графов,	
1.О.20 Основы математической логики и	
информатики,	
1.О.19 Разностные численные методы,	
1.О.15 Уравнения математической физики,	
1.О.17 Теория вероятностей и случайные	
процессы,	
1.О.22 Теория автоматов и алгоритмов,	
1.О.08 Линейная алгебра и аналитическая	
геометрия,	
ФД.05 Исследование операций и теория игр,	
1.О.14 Дифференциальные уравнения	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.08 Линейная алгебра и аналитическая геометрия	Знает: основные понятия и методы линейной алгебры и математической геометрии Умеет: применять и обосновывать выбранные методы линейной алгебры и аналитической геометрии при решении конкретных задач Имеет практический опыт: использование методов линейной алгебры и аналитической геометрии при решении конкретных задач
1.О.21 Дискретная математика и теория графов	Знает: основные понятия и методы дискретной математики, математической логики и теории алгоритмов и автоматов Умеет: применять и обосновывать выбранные методы дискретной математики, математической логики и теории алгоритмов и автоматов при решении конкретных задач Имеет практический опыт: использование методов дискретной математики, математической логики и теории алгоритмов и автоматов при решении конкретных задач
1.О.19 Разностные численные методы	Знает: основные понятия и способы применения численных методов Умеет: применять и обосновывать выбранные численные методы при решении конкретных задач Имеет практический опыт: использование численных методов при решении конкретных задач
1.О.15 Уравнения математической физики	Знает: методы представления научных результатов, основные понятия и методы дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики Умеет: использовать методы самостоятельного составления документов и отчетов, применять и обосновывать выбранные методы дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач Имеет практический опыт:

	1
	самостоятельного составления документов и отчетов, использование методов дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач
1.О.11 Дополнительные главы математического анализа	Знает: основные понятия и методы алгебры, геометрии и математического анализа Умеет: применять и обосновывать выбранные методы алгебры, геометрии и математического анализа при решении конкретных задач Имеет практический опыт: использование методов алгебры, геометрии и математического анализа при решении конкретных задач
1.О.20 Основы математической логики и информатики	Знает: основные понятия и методы математической логики и информатики Умеет: применять и обосновывать выбранные методы математической логики и информатики при решении конкретных задач Имеет практический опыт:
1.О.22 Теория автоматов и алгоритмов	Знает: основные понятия теории автоматов и алгоритмов, основные понятия и методы дискретной математики, математической логики и теории алгоритмов и автоматов Умеет: находить, анализировать и реализовывать основные виды алгоритмов, применять и обосновывать выбранные методы дискретной математики, математической логики и теории алгоритмов и автоматов при решении конкретных задач Имеет практический опыт: использование методов дискретной математики, математической логики и теории алгоритмов и автоматов при решении конкретных задач
1.О.12 Комплексный анализ	Знает: основные понятия и методы комплексного и функционального анализа Умеет: применять и обосновывать выбранные методы комплексного и функционального анализа при решении конкретных задач Имеет практический опыт: использование методов комплексного и функционального анализа при решении конкретных задач
1.О.17 Теория вероятностей и случайные процессы	Знает: основные понятия и методы теории вероятностей, математической статистики и случайных процессов Умеет: применять и обосновывать выбранные методы теории вероятностей, математической статистики и случайных процессов при решении конкретных задач Имеет практический опыт: использование методов теории вероятностей, математической статистики и случайных процессов при решении конкретных задач
1.О.10 Математический анализ	Знает: основные понятия и методы алгебры, геометрии и математического анализа Умеет: применять и обосновывать выбранные методы алгебры, геометрии и математического анализа

	при решении конкретных задач Имеет
	практический опыт: использование методов
	алгебры, геометрии и математического анализа
	при решении конкретных задач
	Знает: способы представления экономических
	задач методами теории игр и исследования
	операций, основные понятия и методы
	комплексного анализа, исследования операций и
	теории игр и функционального анализа Умеет:
	использовать основные элементы экономических
	знаний при интерпретации результатов решения
	задач, применять и обосновывать методы
ФД.05 Исследование операций и теория игр	комплексного анализа, исследования операций и
	теории игр и функционального анализа при
	решении конкретных задач Имеет практический
	опыт: решения задач практической деятельности
	и интерпретации полученных результатов на
	основе экономических знаний, использование
	методов комплексного анализа, исследования
	операций и теории игр и функционального
	анализа при решении конкретных задач
	Знает: способы представления научных
	результатов, основные понятия и методы
	дифференциальных уравнений,
	дифференциальной геометрии и топологии и
	уравнений математической физики Умеет:
	использовать методы представления научных
	результатов, применять и обосновывать
	выбранные методы дифференциальных
1.О.14 Дифференциальные уравнения	уравнений, дифференциальной геометрии и
	топологии и уравнений математической физики
	при решении конкретных задач Имеет
	практический опыт: самостоятельного
	составления документов и отчетов,
	использование методов дифференциальных
	уравнений, дифференциальной геометрии и
	топологии и уравнений математической физики
	при решении конкретных задач

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 54,25 ч. контактной работы

Вид учебной работы		Распределение по семестрам в часах Номер семестра 6	
Общая трудоёмкость дисциплины	108	108	
Аудиторные занятия:	48	48	
Лекции (Л)	32	32	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16	

Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	53,75	53,75
Подготовка к зачету	18,75	18.75
РГР "Дифференциальная геометрия и топология"	20	20
Подготовка к контрольной работе "Теория кривых"	7,5	7.5
Подготовка к контрольной работе "Теория поверхностей"	7,5	7.5
Консультации и промежуточная аттестация	6,25	6,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

$N_{\underline{0}}$	Havivoyanayya maayayan waayyyyyyyy	Объем аудиторных занятий по видам в часах			
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР
1	Топология	16	12	4	0
2	Теория кривых	10	6	4	0
3	Теория поверхностей	22	14	8	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	I I	Множества и функции. Топологические пространства. Метрические пространства	2
2		Непрерывные обображения. Гомеоморфизм. Аксиомы отделимости. Некоторые понятия общей топологии.	2
3	1	Свойства связных множеств	2
4	1	Связность и непрерывные отображения	2
5-6	1	Приложение к проблеме гомеоморфизма	4
7	2	Кривые, способы задания. Длина дуги. Натуральный параметр.	2
8	,	Кривизна плоских кривых. Эволюта. Пространственные кривые. Репер Френе.	2
9	2	Кривизна и кручение пространственных кривых.	2
10	3	Поверхности. Способы задания поверхностей. Координаты на поверхности. Касательная плоскость.	2
11	3	Первая квадратичная форма поверхности. Площадь поверхности.	2
12	3	Кривизна кривых на поверхности.	2
13	1 3	Вторая квадратичная форма и ее свойства. Инварианты пары квадратичных форм.	2
14	3	Главные кривизны поверхности. Средняя и гауссова кривизна поверхности.	2
15	3	Деривационные формулы. Символы Кристоффеля поверхности.	2
16	3	Геодезическая кривизна. Геодезические и их свойства.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1		Множества и функции. Топологические пространства. Метрические пространства. Непрерывные отображения. Гомеоморфизм.	2

2	1	Способы задания топологий. Некоторые понятия общей топологии	2
3	2	Кривые, способы задания. Длина дуги. Натуральный параметр.	2
4	2	Кривизна плоских кривых. Эволюта. Пространственные кривые.	2
4	3	Первая квадратичная форма поверхности. Площадь поверхности.	2
6	3	Кривизна кривых на поверхности. Вторая квадратичная форма и ее свойства. Инварианты пары квадратичных форм. Главные кривизны поверхности. Средняя и гауссова кривизна поверхности.	2
7	3	Деривационные формулы. Символы Кристоффеля поверхности.	2
8	3	Контрольная работа «Теория поверхностей».	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Подготовка к зачету	ПУМД осн.лит-ра [1] гл.1-2, с.6-60, [2] гл. 1,2, стр. 2-32 ЭУМД осн.лит-ра [2] гл. 1,2, стр. 7-95, доп.лит-ра [3] гл. 1,2, стр.7-67	6	18,75		
РГР "Дифференциальная геометрия и топология"	ПУМД осн.лит-ра [2] гл. 2, стр. 17-32 (или ЭУМД [1] гл. 1,2, стр. 6-32, учебное пособие)	6	20		
Подготовка к контрольной работе "Теория кривых"	ПУМД осн.лит-ра [2] гл. 1, стр. 6-11 ЭУМД осн.лит-ра [2] гл. 1, стр. 7-36, доп.лит-ра [3] гл. 1,2, стр.7-47	6	7,5		
Подготовка к контрольной работе "Теория поверхностей"	ПУМД осн.лит-ра [2] гл. 1, стр. 12-16 ЭУМД осн.лит-ра [2] гл. 2, стр. 37-95, доп.лит-ра [3] гл. 1,2, стр. 48-67	6	7,5		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	6	Текущий контроль	Опрос	0,5	10	Студент должен ответить на три вопроса по топологии, каждый оценивается в три балла: 3 балла - приведен полный ответ; 2 балла - ответ содержит незначительные	зачет

						пробелы;	
						1 балл - ответ содержит основную	
						формулу, но есть значительные пробелы в	
						условиях применения и сопутствующей	
						информации; 0 баллов - ответ не верен.	
						о баллов - бівсі не верен.	
						Дополнительный балл добавляется если в	
						одном из заданных вопросов студент	
						привел обоснование (вывод) основной	
						формулы.	
						Решение трех задач по топологии. Каждая	
						оценивается по 4х балльной шкале:	
						4 балла – задача решена правильно,	
						3 балла содержится не более двух	
						негрубых ошибок, не повлиявших на	
						общий ход решения задачи, верно выбран	
						метод решения задачи, запись решения	
						последовательная и математически	
						грамотная, решение доведено до ответа;	
		Текущий				2 балла – в решении содержатся 2–3 ошибки, не повлиявшие существенно на	
2	6	контроль	Решение задач	1	12	ход решения, или решение не доведено до	зачет
		контроль				ответа, но при этом изложено не менее	
						60% полного решения.	
						1 балл – в процессе решения задачи	
						допущены существенные ошибки,	
						показавшие, что студент не владеет	
						обязательными знаниями и умениями по	
						данной теме, или изложено менее 40%	
						полного решения;	
						0 баллов – неверно выбран метод решения	
						или изложено менее 20% полного решения	
						Контрольная работа по Теории кривых	
						проводится на практическом занятии.	
						Продолжительность – 2 академических	
						часа. Она содержит 4 задачи и опрос по	
						основным формулам и понятиям. Студент должен самостоятельно решить задачи,	
						оформить их решение на отдельном	
						листочке.	
						Каждая из задач и Опрос теории	
						оценивается от 0 до 4 баллов следующим	
		- V	Контрольная			образом:	
3	6	Текущий	работа Теория	1	20	4 балла – задача решена правильно	зачет
		контроль	кривых			(полный ответ);	
			_			3 балла содержится не более двух	
						негрубых ошибок, не повлиявших на	
						общий ход решения задачи, верно выбран	
						метод решения задачи, запись решения	
						последовательная и математически	
						грамотная, решение доведено до ответа	
						(ответ содержит описки, исправленные	
						после вопроса);	
						2 балла – в решении содержатся 2–3	
				1		ошибки, не повлиявшие существенно на	

						ход решения, или решение не доведено до ответа, но при этом изложено не менее 60% полного решения (ответ содержит неточности); 1 балл — в процессе решения задачи допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме, или изложено менее 40% полного решения (ответа); 0 баллов — неверно выбран метод решения или изложено менее 20% полного решения (ответа).	
4	6	Текущий контроль	Контрольная работа Теория поверхностей	1	20	Контрольная работа по Теории поверхностей проводится на практическом занятии. Продолжительность — 2 академических часа. Она содержит 3 задачи и проверку лекционного материала. Студент должен самостоятельно решить задачи, оформить их решение на отдельном листочке. Первые две задачи и каждый из 4х вопросов третьей задачи оцениваются от 0 до 3 баллов следующим образом: 3 балла — задача решена правильно; 2 балла — в решении содержатся ошибки, не повлиявшие существенно на ход решения, или решение не доведено до ответа, но при этом изложено не менее 60% полного решения; 1 балл — в процессе решения задачи допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме, или изложено менее 40% полного решения; 0 баллов — неверно выбран метод решения или изложено менее 20% полного решения. Лекционный материал оценивается в 2 балла следующим образом: 2 балла — лекции полны и подготовлен глоссарий для решения задач, 1 балл — лекции не полны, но подготовлен глоссарий для решения задач, либо лекции полны, но отсутствует глоссарий для решения задач. 0 баллов — отсутствие лекций.	зачет
5	6	Проме- жуточная аттестация	Зачет	-	5	На зачет выносится материал всего семестра. Студенту задается комплексная задача, которая оценивается по пятибалльной шкале правильно выбраны формулы, но нет решения конкретной задачи - 1 балл; - приведенное решение содержит теоретические ошибки - 2 балла;	зачет

		 решение правильное - 3 балла; решение правильное, студент демонстрирует понимание формул при собеседовании - 4 балла; решение правильное, студент верно отвечает на вопросы на понимание формул 	
		и может привести их вывод - 5 баллов.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	текущего контроля обязательно. Если реитинг студента по	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ KN		
ОПК-1	Знает: основные понятия и методы дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической	+	+	+-	1 5 + +
ОПК-1	физики Умеет: применять и обосновывать выбранные методы дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач	+	+	+-	+++
ОПК-1	математи теской физики при решении конкретных задат Имеет практический опыт: использование методов дифференциальных уравнений, дифференциальной геометрии и топологии и уравнений математической физики при решении конкретных задач	+		+-	+ +

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Иванова, Н. Д. Элементы дифференциальной геометрии и топологии [Текст] учеб. пособие по направлению "Математика и компьютер. науки" др. Н. Д. Иванова; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2018. 59, [2] с. ил. электрон. версия
- 2. Иванова, Н. Д. Сборник задач по дифференциальной геометрии [Текст] учеб. пособие для направления "Математика и компьютер. науки" и др.

Н. Д. Иванов; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. - Челябинск: Издательский Центр ЮУрГУ, 2018. - 31, [1] с. электрон. версия

б) дополнительная литература: Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Иванова, Н. Д. Сборник задач по дифференциальной геометрии [Текст] учеб. пособие для направления "Математика и компьютер. науки" и др. Н. Д. Иванов; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2018. 31, [1] с. электрон. версия

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Иванова, Н. Д. Сборник задач по дифференциальной геометрии [Текст] учеб. пособие для направления "Математика и компьютер. науки" и др. Н. Д. Иванов; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. - Челябинск: Издательский Центр ЮУрГУ, 2018. - 31, [1] с. электрон. версия

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	литература	библиотечная система	Розендорн, Э.Р. Задачи по дифференциальной геометрии. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2008. — 144 с. — Режим доступа: http://e.lanbook.com/book/2295 — Загл. с экрана.
2	литература	Электронно- библиотечная система издательства Лань	Мищенко, А.С. Курс геометрии: элементы топологии, дифференциальная геометрия, основания геометрии. [Электронный ресурс] / А.С. Мищенко, А.Т. Фоменко — Электрон. дан. — М.: Физматлит, 2004. — 304 с. — Режим доступа: https://e.lanbook.com/book/154011 — Загл. с экрана.

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Не предусмотрено