ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Политехнический институт

Электронный документ, подписанный ПЭП, хранитев в еистеме электронного документооборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ваулин С. Д. Пользователь: vaulinsd Дата подписания: © 21 1 2021

С. Д. Ваулин

РАБОЧАЯ ПРОГРАММА

дисциплины Б.1.17 Термодинамика и теплопередача для направления 15.03.03 Прикладная механика уровень бакалавр тип программы Академический бакалавриат профиль подготовки Прикладная механика, динамика и прочность машин форма обучения очная кафедра-разработчик Двигатели летательных аппаратов

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.03 Прикладная механика, утверждённым приказом Минобрнауки от 12.03.2015 № 220

Зав.кафедрой разработчика, д.техн.н., проф.

С. Д. Ваулин

Разработчик программы, д.техн.н., доц., профессор

лектронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского госуларетвенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кириллов В. В. Пользовятель: kinllowy Пата подписания 311. (2021)

В. В. Кириллов

СОГЛАСОВАНО

Зав.выпускающей кафедрой Техническая механика к.техн.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (ОХВО) ТУГУ (ОХВО) ТОКОВ ТОК

П. А. Тараненко

1. Цели и задачи дисциплины

Представление обучающимся знаний о законах термодинамики, тепловых свойствах рабочих тел, закономерностях протекания термодинамических процессов, основных видах и закономерностях процессов теплообмена, являющихся базовыми при изучении специальных дисциплин и дисциплин специализации.

Краткое содержание дисциплины

Термодинамика представляет собой науку о закономерностях преобразования энергии. Термодинамика позволяет определить возможность и направленность протекания различных физико-химических процессов. Теплопередача изучает механизмы переноса тепла в различных процессах в науке и технике и является теоретической основой проектирования теплообменных ап-паратов различного назначения.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
ОПК-2 способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	Знать: основные физические положения, законы механики, термодинамики и теплопередачи, описывающие рабочие процессы Уметь: применять физико-математические методы моделирования и расчета при анализе рабочих процессов Владеть: навыками проведения тепловых и газодинамических расчетов рабочих процессов

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,	
видов работ учебного плана	видов работ	
	В.1.06 Практикум по виду профессиональной	
Б.1.05.01 Математический анализ,	деятельности,	
Б.1.06 Физика	Б.1.14 Строительная механика машин,	
	Б.1.15 Строительная механика оболочек	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Б.1.06 Физика	знать: основные физические законы, уметь: применять физико-математические методы; владеть: навыками разработки на базе физических законов
Б.1.05.01 Математический анализ	знать: основные законы и методы математики; уметь: применять математические методы в проектировании; владеть: математическими

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч.

Вид учебной работы		Распределение по семестрам в часах Номер семестра 5	
Общая трудоёмкость дисциплины	108	108	
Аудиторные занятия:	48	48	
Лекции (Л)	32	32	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16	
Лабораторные работы (ЛР)	0	0	
Самостоятельная работа (СРС)	60	60	
изучение конспекта лекций и рекомендованной литературы	49	49	
подготовка к экзамену	11	11	
Вид итогового контроля (зачет, диф.зачет, экзамен)	-	экзамен	

5. Содержание дисциплины

No	Hawkayanayya naayayan waxwyyyyyy	Объем аудиторных занятий по видам в часах			
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР
1	Термодинамика	16	10	6	0
2	Теплопроводность	8	4	4	0
3	Конвективный теплообмен	16	12	4	0
4	Теплообмен излучением	8	6	2	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основные понятия и определения термодинамики. Параметры состояния, координаты состояния, потенциал взаимодействия. Виды термодинамических систем. Уравнение состояния совершенного газа. Теплоёмкость, теплота, работа. Внутренняя энергия.	
2	1	Первый закон термодинамики для закрытой и открытой систем. Энтальпия. Понятие о термодинамическом процессе. Второй закон термодинамики. Интеграл Клаузиуса. Энтропия. Изменение энтропии в обратимых и необратимых процессах.	2
3	1	Смеси совершенных газов. Процессы совершенных газов.	2
4	1	Циклы воздушно реактивных и ракетных двигателей	2
5		Основные положения термодинамики систем с переменным количеством рабочего тела	2
6		Закон Фурье. Дифференциальное уравнение теплопроводности. Условия однозначности. Стационарная теплопроводность пластины	2

7	2	Стационарная теплопроводность цилиндрических и шаровых стенок. Тепловая защита.	2
8	3	Конвекция. Виды конвекции. Пограничный слой. Уравнения пограничного слоя.	2
9	3	Критерии подобия конвективного теплообмена. Теорема подобия Кирпичёва-Гухмана	2
10	3	Теплообмен при высокоскоростном продольном обтекании поверхностей летательных аппаратов	2
11	3	Конвективный теплообмен в каналах охлаждения камер сгорания и сопел ЖРД	2
12	3	Конвективный теплообмен при свободной конвекции в полостях ракет	2
13	3	Конвективный теплообмен при кипении криогенных компонентов топлива	2
14	4	Виды лучистых тепловых потоков. Законы теплового излучения	2
15	4	Теплообмен излучением в системе плоско-параллельных тел. Теплообмен тела с оболочкой.	2
16	4	Защита от теплового излучения. Основные понятия теплообмена излучением в поглощающей и рассеивающей среде.	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во
	1 / \		часов
1	1	Параметры состояния, уравнение состояния совершенного газа. Процессы в газах.	2
2	1	Процессы в смесях газов с переменной теплоёмкостью	2
3	1	Циклы воздушно-реактивных и ракетных двигателей	2
4	2	Теплопроводность плоской стенки, цилиндра	2
5	2	Теплопроводность цилиндрической и шаровой стенок	2
6	3	Теплообмен при продольном высокоскоростном обтекании поверхностей ЛА	2
7	3	Теплообмен при течении в каналах охлаждения ЖРД	2
8	4	Лучистый теплообмен	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов		
Лучистый теплообмен в системе плоско- параллельных тел	[4-6] Теплообмен излучением	6		
подготовка к экзамену	конспект лекций, литература [1-6]	11		
Определение коэффициента теплоотдачи при кипении	[4-6] Теплообмен при кипении	4		
Виды лучистых потоков	[4-6] Теплообмен излучением	2		
Определение коэффициента теплоотдачи при продольном высокоскоростном	[4-6] Конвективный теплообмен в однофазной среде	6		

обтекании поверхностей ЛА		
Смеси совершенных газов. Вычисление газовой постоянной, теплоёмкости, энтальпии. Закон Дальтона	[1-3] Смеси совершенных газов	2
Лучистый теплообмен тела с оболочкой	[4-6] Теплообмен излучением	6
Единицы измерения параметров состояния	[1-3] Понятия и определения	2
Молекулярно-кинетическая теория теплоёмкости. Теплота, работа, функции состояния. Первый закон термодинамики	[1-3] Первый закон термодинамики	2
Определение коэффициента теплоотдачи при свободной конвекции	[4-6] Конвективный теплообмен при свободной конвекции	4
Второй закон термодинамики. Цикл Карно. Энтропия и термодинамическая вероятность	[1-3] Второй закон термодинамики	2
Циклы воздушно-реактивных и ракетных двигателей	[1-3] Газовые циклы	2
Определение коэффициентов теплоотдачи при течении в каналах охлаждения ЖРД	[4-6] Конвективный теплообмен в однофазной среде	4
Процессы в газах	[1-3] Газовые процессы совершенных газов	2
Стационарная теплопроводность пластины, цилиндра, шара	[4-6] Теплопроводность при стационарном режиме	5

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных занятий	Вид работы (Л, ПЗ, ЛР)	Краткое описание	Кол-во ауд. часов
представление лекций в виде презентаций	плекнии	демонстрация графиков, схем, таблиц, формул	32

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: нет

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Все разделы	ОПК-2 способностью представлять адекватную современному уровню знаний научную картину	текущий	1-30

	мира на основе знания основных положений, законов и методов естественных наук и математики		
Все разделы	ОПК-2 способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	промежуточная аттестация	1-53
Все разделы	ОПК-2 способностью представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики	Экзамен	1-53

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
Экзамен	освещении различных концепций; сделаны содержательные выводы; продемонстрировано знание обязательной и дополнительной литературы, 3 балла - ответ построен логически верно; представлены различные подходы к проблеме, но их обоснование недостаточно полно; установлены содержательные межпредметные связи; выдвигаемые положения обоснованы, однако наблюдается непоследовательность анализа; выводы правильны; продемонстрировано знание обязательной и дополнительной литературы, 2 балла - ответ недостаточно логически выстроен; в плане ответа соблюдается непоследовательно; недостаточно раскрыты профессиональные понятия, категории, концепции, теории; выдвигаемые положения декларируются, но недостаточно аргументируются; продемонстрировано знание обязательной литературы, 1 балл - не раскрыты профессиональные понятия, категории, концепции, теории; научное обоснование проблем подменено рассуждениями обыденно-повседневного характера; ответ содержит ряд серьезных неточностей; выводы поверхностны или неверны; не продемонстрировано знание обязательной литературы, 0 баллов - нет ответа на вопрос.	Отлично: Рейтинг студента более 85 Хорошо: Рейтинг студента 75-84 Удовлетворительно: Рейтинг студента 60-74 Неудовлетворительно: Рейтинг студента менее 60
текущий	Текущий контроль проводится в форме проверки правильности решения задач данного раздела из списка задач.	Зачтено: рейтинг больше или равен 60%

При оценивании результатов используется балльно-	Не зачтено: рейтинг
рейтинговая система оценивания (утверждена приказом	менее 60 %
ректора от 24.05.2019 г. №179). Решение 100 % задач - 3 балла,	
решение 60 % задач- 2 балла, решение 40 % задач- 1 балл,	
решение менее 40 % задач - 0 баллов. Максимальное	
количество баллов - 3. Весовой коэффициент мероприятия 0,5.	

7.3. Типовые контрольные задания

Вид	Типовые контрольные задания
контроля	1 17
	1. Параметры состояния, координаты состояния, функции состояния, уравне-ние
	состояния. 2. Танной месоту Руму донной месоту
	2. Теплоёмкость. Виды теплоёмкости.
	3. Свойства работы как формы обмена энергией, р-у диаграмма.
	4. Свойства теплоты как формы обмена энергией, Т-ѕ диаграмма.
	5. Первый закон термодинамики.
	6. Уравнение первого закона термодинамики для открытой системы.
	7. Что такое термодинамический процесс?
	8. Прямой и обратный циклы. Источник работы в прямом цикле. 9. Цикл Карно.
	10. Второй закон термодинамики. Принцип существования энтропии. Принцип
	возрастания энтропии.
	11. Объединённое уравнение 1-го и 2-го законов термодинамики.
	12. Что такое обратимый и необратимый процессы.
	13. Что называется газовой смесью? Как задаётся состав газовой смеси?
	14. Что такое закон Дальтона?
	15. Теплоёмкость, энтальпия, внутренняя энергия газовой смеси.
	16. Термодинамические процессы, изображения в p-v и T-s диаграммах.
	17. Цикл ТРД со сгоранием топлива при постоянном давлении.
	18. Цикл ТРД с регенерацией.
	19. Третий закон термодинамики.
	20. Закон Фурье, коэффициент теплопроводности, тепловой поток, градиент
Экзамен	температуры.
	21. Условия однозначности.
	22. Граничные условия.
	23. Теплопроводность плоской стенки с граничными условиями III-го рода.
	24. Теплопроводность цилиндрической стенки с граничными условиями III-го рода.
	25. Критический диаметр тепловой изоляции.
	26. Что такое коэффициент теплопередачи?
	27. Теплопроводность стержня постоянного сечения.
	28. Что такое конвективный теплообмен? Виды конвекции.
	29. Формула Ньютона.
	30. Как развивается свободная конвекция?
	31. Критерии подобия конвективного теплообмена и их физический смысл.
	32. Условия подобия физических процессов. Критериальные уравнения.
	33. Динамический пограничный слой. 34. Тепловой пограничный слой.
	35. Конвективный теплообмен при продольном вынужденном обтекании плос-кой
	1
	поверхности. 36. Вязкостный режим теплообмена в трубах.
	37. Вязкостный режим теплооомена в грубах. 37. Вязкостно-гравитационный режим теплообмена в трубах.
	38. Конвективный теплообмен при турбулентном течении в трубах.
	39. Теплообмен при поперечном обтекании цилиндра.
	40. Теплообмен при свободной конвекции в большом объёме.
	41. Теплообмен при свободной конвекции в ограниченном пространстве.

	42. Теплообмен при кипении в большом объёме.
	43. Теплообмен при кипении в трубах.
	44. Что такое массовое (расходное) паросодержание?
	453. Что такое объёмное паросодержание?
	46. Теплообмен при конденсации на вертикальной стенке.
	47. Виды лучистых потоков.
	48. Что такое абсолютно чёрное, абсолютно белое, диатермичное и серое тела?
	49. Законы Планка, Стефана-Больцмана. Кирхгофа
	50. Что такое степень черноты?
	51. Лучистый теплообмен в системе плоско-параллельных тел.
	52. Лучистый теплообмен тела с оболочкой.
	53. Лучистый теплообмен с экраном.
екущий	

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Кириллин, В. А. Техническая термодинамика Текст учебник для вузов по направлению 140100 "Теплоэнергетика" В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин. 5-е изд., перераб. и доп. М.: Издательский дом МЭИ, 2008. 494 с. ил.
 - 2. Кириллин, В. А. Техническая термодинамика Учебник для вузов. 4-е изд., перераб. М.: Энергоатомиздат, 1983. 416 с. ил.
 - 3. Крутов, В. И. Техническая термодинамика Учеб. для машиностроит. спец. вузов Под ред. В. И. Крутова. 3-е изд., перераб. и доп. М.: Высшая школа, 1991. 382,[2] с. ил.
 - 4. Исаченко, В. П. Теплопередача Учебник для теплоэнерг. спец. втузов. 4-е изд., перераб. и доп. М.: Энергоиздат, 1981. 417 с. ил.
 - 5. Кудинов, В. А. Техническая термодинамика Учеб. пособие для втузов В. А. Кудинов, Э. М. Карташов. 4-е изд., стер. М.: Высшая школа, 2005. 260,[1] с. ил.
 - 6. Исаев, С. И. Термодинамика Учеб. для машиностроит. специальностей техн. ун-тов и вузов. 3-е изд., перераб. и доп. М.: МГТУ им. Н. Э. Баумана, 2000. 412,[1] с. ил.

б) дополнительная литература:

- 1. Сборник задач по технической термодинамике Учеб. пособие для студентов вузов по направлениям "Теплоэнергетика" и "Техническая физика" Т. Н. Андрианова, Б. В. Дзампов, В. Н. Зубарев и др. 4-е изд., перераб. и доп. М.: Издательство МЭИ, 2000. 351,[3] с.
- 2. Юдаев, Б. Н. Техническая термодинамика. Теплопередача Учеб. для неэнерг. спец. втузов. М.: Высшая школа, 1988. 478 с. ил.
- 3. Юдаев, Б. Н. Теплопередача Учебник для машиностроит. спец. втузов. 2-е изд., перераб. и доп. М.: Высшая школа, 1981. 319 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Теплоэнергетика
- г) методические указания для студентов по освоению дисциплины:

1. Кириллов, В.В. Теоретические основы теплотехники. Тепломассообмен / В.В. Кириллов.—Челябинск, Издательство ЮУрГУ, 2008.— 69 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Кириллов, В.В. Теоретические основы теплотехники. Тепломассообмен / В.В. Кириллов.—Челябинск, Издательство ЮУрГУ, 2008.— 69 с.

Электронная учебно-методическая документация

Ŋ	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	литература	Электронно- библиотечная система издательства Лань	Арутюнов, В. А. Теплофизика и теплотехника: Теплофизика: Курс лекций: учебное пособие / В. А. Арутюнов, С. А. Крупенников, Г. С. Сборщиков. — Москва: МИСИС, 2010. — 228 с. http://e.lanbook.com/book/2083
2	Основная литература	оиолиотечная	Новиков, И.И. Термодинамика [Электронный ресурс]: учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2009. — 592 с. http://e.lanbook.com/book/286
3	литература	Электронно- библиотечная система издательства Лань	Цветков, О.Б. Термодинамика. Теплопередача [Электронный ресурс]: учебметод. пособие / О.Б. Цветков, Ю.А. Лаптев. — Электрон. дан. — Санкт-Петербург: НИУ ИТМО, 2013. — 54 с. http://e.lanbook.com/book/71120

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

Нет

Перечень используемых информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	306 (2)	компьютерная техника
1	306 (2)	компьютерная техника
Лабораторные занятия	101 (2)	лабораторные установки