ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Политехнический институт

Электронный документ, подписанный ПЭП, хранится в системе электронного документоборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ваулин С. Д. Пользователь: vaulinsd

С. Д. Ваулин

РАБОЧАЯ ПРОГРАММА

дисциплины П.1.В.07.02 Современные расчётно-экспериментальные методы исследования рабочих процессов машин и оборудования для направления 24.06.01 Авиационная и ракетно-космическая техника уровень аспирант тип программы направленность программы форма обучения очная кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 24.06.01 Авиационная и ракетно-космическая техника, утверждённым приказом Минобрнауки от 29.07.2014 № 890

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., заведующий кафедрой

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южнь-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranethopa Цата подписания. 10.1 1201

Электронный документ, подписанный ПЭП, хранится в системе
засктронного документооборога
(Ожно-Уральского государственного университета
СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП
(дан: Тарансных П. А.
атель: Іаланскора
писания: 10.11.2021

П. А. Тараненко

П. А. Тараненко

1. Цели и задачи дисциплины

1. Формирование у аспирантов теоретических и практических знаний в области применения современного программного обеспечения для выполнения сквозного проектирования изделий машиностроения. 2. Ознакомление студентов с продвинутыми возможностями современных CAD/CAM/CAE-систем. 3. Развитие системного мышления студентов. 4. Ознакомление студентов с основами экспериментального модального анализа. 5. Ознакомление студентов с возможностями корректировки расчетных 3D моделей динамических систем по результатам экспериментального модального анализа Задачами изучения дисциплины являются: 1. Освоение современных CAD/CAM/CAE/PLM-систем; 2. Изучение современных теорий, физико-математических и вычислительных методов для решения профессиональных задач динамики и прочности машин; 3. Изучение основ функционального моделирования систем. 4. Изучение основ экспериментального модального анализа

Краткое содержание дисциплины

Тема 1. Введение в Ansys Workbench Тема 2. Методы решения задач динамики сборки абсолютно твердых тел с применением пакета Ansys Workbench Rigid Body Dynamics Тема 3. Методы решения задач о собственных колебаниях с применением пакета Ansys Workbench (классический модальный анализ, модальный анализ с учетом демпфирования (Modal Damping)) Тема 4. Методы решения задач о вынужденных колебаниях с применением пакета Ansys Workbench (метод комплексных амплитуд, метод суперпозиции собственных форм) Тема 5. Теоретические основы экспериментального модального анализа (метод суперпозиции собственных форм) Тема 6. Введение в Siemens Simcenter Amesim Тема 7. Методы решения задач динамики машин и теории колебаний с применением пакета Siemens Simcenter Amesim Тема 8. Введение в Matlab/Simulink Тема 9. Методы решения задач динамики машин и теории колебаний с применением пакета Matlab/Simulink

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
	Знать: современные подходы к решению задач построения расчетных моделей конструкций, верифицированных по результатам модальных испытаний
УК-5 способностью следовать этическим нормам в профессиональной деятельности	Уметь:выполнять расчеты собственных частот и форм, вынужденных колебаний конструкций.
	Владеть:Владеть методами имитационного и функционального моделирования для определения перемещений, скоростей ускорений механизмов при нестационарном возбуждении
ОПК-3 способностью к разработке новых методов исследования и их применению в	Знать: современные теории, физико- математические и вычислительные методы,
самостоятельной научно-исследовательской	метод конечных элементов; теоретические

OCHODIA DICITIONALIZATI NODO MOROHI NODO SVORVICO
основы экспериментального модального анализа;
современные программные системы
компьютерного проектирования; языки
программирования, встроенные в САЕ-системы.
Уметь:применять современные методы
компьютерного моделирования в теоретических
и расчетно-экспериментальных исследованиях;
применять современные методы компьютерного
моделирования в теоретических и расчетно-
экспериментальных исследованиях; выявлять
сущность решаемой задачи, привлекать для ее
решения соответствующий физико-
математический аппарат, вычислительные
методы и компьютерные технологии.
Владеть: современными расчетными и
экспериментальными методами анализа
собственных частот и форм конструкций;
современными программами функционального
моделирования Simcenter Amesim и
Matlab/Simulink.
Знать: существующие методы расчета силовых и
1
кинематических параметров, напряженно-
деформированного состояния машин и
механизмов при нестационарном возбуждении
Уметь:использовать современные расчетные
средства для определения кинематических
параметров и напряженно-деформированного
состояния машин и механизмов
Владеть:навыками выполнения расчетных работ
по анализу динамики и прочности механизмов с
использованием современного программного
обеспечения

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
П.1.В.06.02 Прочность и долговечность высоконагруженных конструкций	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч.

Ριτη γιαδικού παδοτι	Всего	Распределение по семестрам
Вид учебной работы	часов	в часах

		Номер семестра 5
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	38	38
Лекции (Л)	38	38
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	70	70
Подготовка к экзамену	70	70
Вид итогового контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	-	Всего	Л	П3	ЛР
1 1	Динамика сборки из абсолютно твердых тел (Rigid Body Dynamics)	6	6	0	0
2	Решение задач динамики с применением пакета Ansys Workbench	12	12	0	0
3	Основы экспериментального модального анализа	8	8	0	0
4	Основы функционального моделирования	12	12	0	0

5.1. Лекции

№ лекции	№ граздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основы графического интерфейса Ansys Workbench	2
2	1	Решение задачи о кривошипно-шатунном механизме в Ansys Workbench	2
3		Решение задачи о кривошипно-шатунном механизме в Ansys Workbench. Расчет нагрузок. Импорт в Static Structural. Методика расчета на прочность.	2
4	2	Собственные частоты балки с распределенной массой	2
5	,	Собственные частоты изгибных колебаний шарнирно опертого стержня с учетом продольной силы	2
6	2	Вынужденные колебания системы с одной степенью свободы	2
7	2	етод разложения по собственным формам	
8	2	одальный анализ с учетом демпфирования (Modal Damping)	
9	2	Применение команд APDL (Command Snippet) в интерфейсе Ansys Worbench	2
31	3	Методы решения задач о вынужденных колебаниях с применением пакета Ansys Workbench (метод комплексных амплитуд)	2
32	3	Методы решения задач о вынужденных колебаниях с применением пакета Ansys Workbench (метод суперпозиции собственных форм)	2
35	3	Теоретические основы экспериментального модального анализа (метод суперпозиции собственных форм)	
36	3	Решение задачи о колебаниях системы с двумя степенями свободы при большом непропорциональном демпфировании методом суперпозиции собственных форм.	
39	4	Введение в Siemens Simcenter Amesim	2
40	4	Введение в Matlab/Simulink	2

41	4	Построение АЧХ системы с одной степенью свободы в Siemens Simcenter Amesim и Matlab/Simulink	2
42		Анализ переходных процессов (постоянная нагрузка, линейно нарастающая нагруза, ударный импульс) с использованием Siemens Simcenter Amesim	2
43	4	Анализ переходных процессов (постоянная нагрузка, линейно нарастающая нагруза, ударный импульс) с использованием Matlab/Simulink	2
44	4	Сопряжение Ansys Workbench Rigid Body Dynamics и Ansys Simplorer	2

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

	Выполнение СРС				
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов			
Подготовка к экзамену	Бидерман, В. Л. Теория механических колебаний [Текст] Учебник для вузов по спец."Динамика и прочность машин" М.: Высшая школа, 1980 408 с. ил. Основы работы в ANSYS 17 / Н. Н. Федорова, С. А. Вальгер, М. Н. Данилов, Ю. В. Захарова. — Москва: ДМК Пресс, 2017. — 210 с. — ISBN 978-5-97060-425-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/90112 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей. Дьяконов, В. П. Simulink 5/6/7: Самоучитель: самоучитель / В. П. Дьяконов. — Москва: ДМК Пресс, 2009. — 784 с. — ISBN 978-5-94074-423-8. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/1177 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.	70			

6. Инновационные образовательные технологии, используемые в учебном процессе

Не предусмотрены

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: нет

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Все разделы	ОПК-3 способностью к разработке новых методов исследования и их применению в самостоятельной научно-исследовательской деятельности в области авиационной и ракетно-космической техники с учетом правил соблюдения авторских прав		№1-№16
Все разделы УК-5 способностью следовать этическим нормам в профессиональной деятельности		Экзамен	№1-№16
УК-6 способностью планировать и решать задачи собственного профессионального и личностного развития		Экзамен	№1-№16

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
Экзамен	Аспирант получает билет. Билет содержит одну задачу. Задача оценивается по 5-балльной шкале. На выполнение задания отводится 120 минут.	Отлично: изложено правильное понимание вопроса и дан исчерпывающий на него ответ, содержание раскрыто полно, профессионально, грамотно; даны четкие и самостоятельные ответы на вопрос билета (без наводящих вопросов) Хорошо: изложено правильное понимание вопроса, дано достаточно подробное описание предмета ответа, приведены и раскрыты в тезисной форме основные понятия, относящиеся к предмету ответа, ошибочных положений нет Удовлетворительно: продемонстрировано знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии; допущены неточности в ответе, которые устранены с помощью наводящих вопросов преподавателя Неудовлетворительно: имеются существенные пробелы в знаниях основного учебно-программного материала, допущены принципиальные ошибки

7.3. Типовые контрольные задания

Вид контроля Типовые контрольные задания	
	Экзаменационные вопросы приведены в приложении Вопросы к экзамену Современные экспериментальные методы.docx

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Бидерман, В. Л. Теория механических колебаний [Текст] Учебник для вузов по спец."Динамика и прочность машин". М.: Высшая школа, 1980. 408 с. ил.
 - 2. Каплун, А. Б. Ansys в руках инженера [Текст] практ. рук. А. Б. Каплун, Е. М. Морозов, М. А. Олферьева; предисл. А. С. Шадского. Изд. стер. М.: URSS: ЛИБРОКОМ, 2014. 269 с. ил.
 - 3. Чигарев, А. В. ANSYS для инженеров Справ. пособие А. В. Чигарев, А. С. Кравчук, А. Ф. Смалюк. М.: Машиностроение: Машиностроение-1, 2004. 511 с. ил.
 - 4. Мэтьюз, Д. Г. Численные методы: Использование Matlab Д. Г. Мэтьюз, К. Д. Финк; Пер. с англ. Л. Ф. Козаченко; Под ред Ю. В. Козаченко. 3-е изд. М. и др.: Вильямс, 2001. 711 с. ил.
 - 5. Дьяконов, В. Matlab 6 Учеб. курс Д. Дьяконов. СПб. и др.: Питер, 2001. 592 с. ил.
 - 6. Дьяконов, В. П. Matlab 6/6.1/6.5 + Simulink 4/5 в математике и моделировании В. П. Дьяконов. М.: Солон-Пресс, 2003. 565 с. ил.

б) дополнительная литература:

- 1. Ибряева, О. Л. Вычислительная математика с использованием Matlab [Текст] учеб. пособие по направлению 02.03.01 "Фундам. информатика и информ. технологии" и др. О. Л. Ибряева, Н. М. Япарова; Юж.-Урал. гос. ун-т, Каф. Вычисл. математика и высокопроизвод. вычисления; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2017. 63, [1] с. ил. электрон. версия
- 2. Некрасов, С. Г. Идентификация динамических объектов с инструментами System Identification Toolbox в системе Matlab [Текст] учеб. пособие к лаб. работам по направлению 200100 "Приборостроение" С. Г. Некрасов, Р. А. Хажиев, Н. В. Николайзин ; Юж.-Урал. гос. ун-т, Каф. Информ.-измер. техника ; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2013. 107, [1] с. ил. электрон. версия
- 3. Потемкин, В. Г. Вычисления в среде MATLAB В. Г. Потемкин. М.: Диалог-МИФИ: Д и М, 2004. 714 с. ил.
- 4. Черных, И. В. Simulink: среда создания инженерных приложений И. В. Черных; Под общ. ред. В. Г. Потемкина. М.: ДИАЛОГ-МИФИ, 2004. 491 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Романов В.А., Тараненко П.А. Аналитическая динамика и теория колебаний. Учебное пособие

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Романов В.А., Тараненко П.А. Аналитическая динамика и теория колебаний. Учебное пособие

Электронная учебно-методическая документация

$N_{\underline{0}}$	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Методические пособия для самостоятельной работы студента	Электронно- библиотечная система издательства Лань	Основы работы в ANSYS 17 / Н. Н. Федорова, С. А. Вальгер, М. Н. Данилов, Ю. В. Захарова. — Москва: ДМК Пресс, 2017. — 210 с. — ISBN 978-5-97060-425-0. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/90112 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
2	Основная литература	Электронно- библиотечная система издательства Лань	Поршнев, С. В. Компьютерное моделирование физических процессов в пакете МАТLАВ: учебное пособие / С. В. Поршнев. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021. — 736 с. — ISBN 978-5-8114-1063-7. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/167842 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
3	Дополнительная литература	Электронно- библиотечная система издательства Лань	Тарасян, В. С. Моделирование кинематики плоских многозвенных механизмов в среде MatLab: учебное пособие / В. С. Тарасян, Г. В. Васильева. — Екатеринбург:, 2018. — 94 с. — ISBN 978-5-94614-442-1. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/121360 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
4	Дополнительная литература	Электронно- библиотечная система издательства Лань	Моделирование мехатронных систем в среде МАТLAB (Simulink / SimMechanics): учебное пособие / В. М. Мусалимов, Г. Б. Заморуев, И. И. Калапышина, А. Д. Перечесова. — Санкт-Петербург: НИУ ИТМО, 2013. — 114 с. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/70925 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
5	Дополнительная литература	Электронно- библиотечная система издательства Лань	Ермак, В. Н. Практикум по теории механизмов и машин в среде MatLab: учебное пособие / В. Н. Ермак. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2009. — 86 с. — ISBN 978-5-89070-701-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/6665 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
6	Основная литература	Электронно- библиотечная система издательства	Дьяконов, В. П. MATLAB R2006/2007/2008 + Simulink 5/6/7. Основы применения / В. П. Дьяконов. — 2-е изд. — Москва : СОЛОН-Пресс, 2008. — 800 с. — ISBN 978-5-91359-042-8. — Текст : электронный // Лань :

			электронно-библиотечная система. — URL: https://e.lanbook.com/book/13774 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.
7	методические пособия для самостоятельной работы ступента	Электронно- библиотечная система издательства Лань	Дьяконов, В. П. Simulink 5/6/7: Самоучитель: самоучитель / В. П. Дьяконов. — Москва: ДМК Пресс, 2009. — 784 с. — ISBN 978-5-94074-423-8. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/1177 (дата обращения: 03.11.2021). — Режим доступа: для авториз. пользователей.

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

Нет

Перечень используемых информационных справочных систем:

Нет

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
1	334 (2)	Компьютерная техника, ПО Ansys for Students
Лекции	336 (2)	Компьютер, проектор, экран