ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Институт естественных и точных наук

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П1.05 Введение в гидродинамику плазмы **для направления** 01.03.03 Механика и математическое моделирование **уровень** Бакалавриат

профиль подготовки Механика и математическое моделирование жидкости, газа и плазмы

форма обучения очная кафедра-разработчик Вычислительная механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.03.03 Механика и математическое моделирование, утверждённым приказом Минобрнауки от 10.01.2018 № 10

Зав.кафедрой разработчика, к.физ.-мат.н., доц.

электронный документ, водинеанный ПЭП, хранится в системе электронного документооборота ПОУРГУ (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Шествоюская Е. С. Пользователь (СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Гользователь) (СВЕДЕНИЯ СВЕДЕНИЯ СВЕ

Е. С. Шестаковская

Разработчик программы, д.физ.-мат.н., проф., профессор

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдат: Ядовец А. П. Подводатель: ialovelcap [для подписания: 13.11.2021

А. П. Яловец

СОГЛАСОВАНО

Руководитель образовательной программы д.физ.-мат.н., проф.

Ю. М. Ковалев

1. Цели и задачи дисциплины

Целью курса является воспитание естественнонаучного мировоззрения как основного способа познания окружающего мира. Основные задачи курса: 1. Выполнение образовательного стандарта. 2. Изучение теоретического курса гидродинамики плазмы. 3. Формирование у студентов естественнонаучной картины мира. 4. Подготовка студентов к освоению общепрофессиональных и специальных дисциплин.

Краткое содержание дисциплины

1. Термодинамика плазмы. 2. Столкновения частиц в плазме. 3. Гидродинамическое описание плазмы. 4. Тепловое излучение и лучистый теплообмен.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-6 Уметь использовать математические модели и владеть математическими методами расчетов задач механики жидкости, газа и	Знает: фундаментальные законы, ключевые аспекты и концепции гидродинамики плазмы Умеет: использовать математические методы решения различного рода задач физики плазмы
плазмы.	Имеет практический опыт: решения типовых задач гидродинамики плазмы

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Основы теории прочности и механики	
разрушения материалов,	
Математические модели в механике сплошных	
сред,	Не предусмотрены
Основы теории упругости и пластичности,	
Газовая динамика,	
Гидромеханика	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Гидромеханика	Знает: математические модели гидромеханики Умеет: Имеет практический опыт: проведения типовых гидродинамических расчётов
Газовая динамика	Знает: основные математические модели газовой динамики Умеет: решать задачи одномерной газовой динамики Имеет практический опыт:
математические модели в механике сплошных	Знает: основы математических моделей механики сплошных сред Умеет: Имеет практический опыт: использования

	математических моделей и методов решения задач механики жидкости и газа
Основы теории упругости и пластичности	Знает: основные уравнения теории упругости и пластических течений Умеет: применять методы расчёта напряженного состояния конструктивных материалов Имеет практический опыт: применения моделей упругих, пластических и упруго-пластических течений
Основы теории прочности и механики разрушения материалов	Знает: основные закономерности поведения конструкций при динамических и статических нагрузках Умеет: решать классические задачи теории прочности и механики разрушения материалов Имеет практический опыт: применения моделей прочности материалов

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 46,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 8
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	42	42
Лекции (Л)	28	28
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	14	14
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	25,75	25,75
с применением дистанционных образовательных технологий	0	
Подготовка к зачету	10	10
Подготовка к контрольным работам	15,75	15.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No	Наумамарамуа раздалар дуамундууу	Объем аудиторных занятий по видам в часах				
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР	
1	Термодинамика плазмы	10	6	4	0	
2	Столкновения частиц в плазме	6	4	2	0	
3	Гидродинамическое описание плазмы	12	8	4	0	
4	Тепловое излучение и лучистый теплообмен	14	10	4	0	

5.1. Лекции

№ № Наименование или краткое содержание лекционного занятия	Кол-	
---	------	--

лекции	раздела		во часов
1-3	1	Температура плазмы. Плазменные колебания. Электростатическое экранирование. Параметр неидеальности. Равновесная ионизация. Макроскопические параметры плазмы. Уравнение состояния идеальной плазмы	6
4-5	2	Кулоновские столкновения. Диффузия частиц в плазме. Вязкость плазмы. Теплопроводность плазмы. Проводимость плазмы.	4
6-7		Основные уравнения. Однотемпературное двухжидкостное описание плазмы. Одножидкостная модель плазмы. Приближение идеальной проводимости.	4
8-9		Дрейфовое приближение. Диффузия магнитного поля. Равновесный пинч. Изотермическая атмосфера.	4
10-12	4	Механизмы испускания, поглощения и рассеяния электромагнитного излучения в газах. Характеристики поля излучения квантов электромагнитной энергии.	6
13-14	//	Оптические характеристики вещества. Равновесное излучение (тепловое излучение) Уравнение переноса излучения	4

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1-2	1	Термодинамика плазмы. Плазменные колебания. Электростатическое экранирование.	4
3	2	Столкновения частиц в плазме. Связь переданной энергии при упругом столкновении частиц с углом рассеяния в системе центра масс. Кулоновские столкновения частиц. Формула Резерфорда.	2
4-5		Гидродинамическое описание плазмы. Система уравнений для однотемпературного двухжидкостного описание плазмы. Уравнения для одножидкостного описания плазмы	4
6-7	4	Тепловое излучение и лучистый теплообмен. Движение вещества с учетом лучистого теплообмена. Локальное равновесие и приближение лучистой теплопроводности.	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС							
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на	Семестр	Кол- во				
	ресурс		часов				
	ПУМД доп. гл.2,3,5; ЭУМД осн.[1] стр.7-79, 131-150; осн.[2] стр.7-44, 111-120; 194-206; доп. гл.1,4,5,7,9,11	8	10				
	ПУМД доп. гл.2,3,5; ЭУМД осн.[1] стр.7-79, 131-150; осн.[2] стр.7-44, 111-120; 194-206	8	15,75				

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се-	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	8	Текущий контроль	Контрольная работа №1	1	15	Контрольная работа содержит 3 задачи. Каждая задача оценивается по пятибалльной шкале: 5 баллов — задача решена верно, студент может объяснить полученное решение 4 балла — задача решена верно, но имеются недочёты или незначительные ошибки 3 балла — задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить 2 балла — задача решена не верно, ход решения выбран верный, имеются ошибки в формулах 1 балл — задача не решена, но верно записаны основные формулы 0 баллов — решение не предоставлено.	зачет
2	8	Текущий контроль	Контрольная работа №2	1		Контрольная работа содержит 3 задачи. Каждая задача оценивается по пятибалльной шкале: 5 баллов — задача решена верно, студент может объяснить полученное решение 4 балла — задача решена верно, но имеются недочёты или незначительные ошибки 3 балла — задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить 2 балла — задача решена не верно, ход решения выбран верный, имеются ошибки в формулах 1 балл — задача не решена, но верно записаны основные формулы 0 баллов — решение не предоставлено.	зачет
3	8	Текущий контроль	Контрольная работа №3	1		Контрольная работа содержит 3 задачи. Каждая задача оценивается по пятибалльной шкале: 5 баллов — задача решена верно, студент может объяснить полученное решение 4 балла — задача решена верно, но имеются недочёты или незначительные ошибки 3 балла — задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить 2 балла — задача решена не верно, ход решения выбран верный, имеются ошибки в формулах 1 балл — задача не решена, но верно записаны основные формулы 0 баллов — решение не предоставлено.	зачет

4	8	Текущий контроль	Контрольная работа №4	1	10	Работа содержит два теоретических вопроса. Каждый вопрос оценивается по пятибалльной шкале: дан полный ответ на вопрос - 5 баллов; дан полный ответ на вопрос, но имеются неточности в ответе - 4 балла; дан неполный ответ на вопрос, выделены основные положения - 3 балла; дан неполный ответ на вопрос, допущены 1-2 негрубые ошибки - 2 балла; дан неполный ответ на вопрос, допущены грубые ошибки - 1 балл; ответ отсутствует - 0 баллов.	зачет
5	8	Проме- жуточная аттестация	Устный ответ	-	10	Билет содержит два вопроса. Каждый вопрос оценивается по пятибалльной шкале: дан полный ответ на вопрос - 5 баллов; дан полный ответ на вопрос, но имеются неточности в ответе - 4 балла; дан неполный ответ на вопрос, выделены основные положения - 3 балла; дан неполный ответ на вопрос, допущены 1-2 негрубые ошибки - 2 балла; дан неполный ответ на вопрос, допущены грубые ошибки - 1 балл; ответ отсутствует - 0 баллов.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	Прохождение всех контрольно-рейтинговых мероприятий	В соответствии с пп. 2.5, 2.6 Положения

6.3. Оценочные материалы

Vargamayyyyy	Donum romy of ways		√o	2 КМ	
Компетенции	Результаты обучения	1	2	3	45
IIIK-0	Знает: фундаментальные законы, ключевые аспекты и концепции гидродинамики плазмы	+	+	+-	+++
ПК-6	ТК-6 Умеет: использовать математические методы решения различного рода задач физики плазмы		+	+	+
ПК-6	Имеет практический опыт: решения типовых задач гидродинамики плазмы	+		+	++

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

- б) дополнительная литература:
 - 1. Зельдович, Я. Б. Физика ударных волн и высокотемпературных гидродинамических явлений [Текст] Я. Б. Зельдович, Ю. П. Райзер. 3-е изд., испр. М.: Физматлит, 2008. 652, [1] с. черт.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические рекомендации для самостоятельной работы студента

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические рекомендации для самостоятельной работы студента

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература		Котельников, И. А. Лекции по физике плазмы: учебное пособие для вузов: в 2 томах / И. А. Котельников. — 3-е изд., испр. И доп. — Санкт-Петербург: Лань, 2021 — Том 1: Основы физики плазмы — 2021. — 400 с. https://e.lanbook.com/book/165805
2	Основная литература	электронно- библиотечная	Котельников, И. А. Лекции по физике плазмы: учебное пособие для вузов: в 2 томах / И. А. Котельников. — 3-е изд., испр. И доп. — Санкт-Петербург: Лань, 2021 — Том 2: Магнитная гидродинамика — 2021. — 448 с. https://e.lanbook.com/book/165806
3		Электронно- библиотечная система издательства Лань	Голант, В. Е. Основы физики плазмы: учебное пособие / В. Е. Голант, А. П. Жилинский, И. Е. Сахаров. — 2-е изд., испр. и доп. — Санкт-Петербург: Лань, 2021. — 448 с. https://e.lanbook.com/book/167879

Перечень используемого программного обеспечения:

1. -Maple 13(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
-------------	------------------	--

Лекции	708a (1)	мультимедийный проектор
Практические	708a	мультимедийный проектор, доска, мел.
занятия и семинары	(1)	мультимедииный проектор, доска, мел.