## ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ Заведующий кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranenkopa Lara подписания: 710 5 2025

П. А. Тараненко

## РАБОЧАЯ ПРОГРАММА практики

Практика Производственная практика (научно-исследовательская работа) для направления 15.04.03 Прикладная механика Уровень Магистратура форма обучения очная кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 731

Разработчик программы, к.техн.н., доц., заведующий кафедрой



П. А. Тараненко

#### 1. Общая характеристика

#### Вид практики

Производственная

#### Тип практики

научно-исследовательская работа

#### Форма проведения

Дискретно по видам практик

#### Цель практики

Подготовка материалов для ВКР.

#### Задачи практики

изучение особенностей научно-производственной деятельности на предприятии промышленного комплекса и должностных обязанностей по конкретному направлению;

изучение режима работы и организационной структуры предприятия или организации по месту прохождения практики и действующей на нем системы управления;

ознакомление с содержанием основных работ и исследований, выполняемых на предприятии или в организации по месту прохождения практики; ознакомление с общими требованиями, предъявляемыми к бакалавру по направлению 15.03.03 «Прикладная механика»;

расширение знаний, полученных при изучении инженерных и специальных дисциплин в университете и их применение в профессиональной деятельности; приобретение практических навыков применения современных информационных технологий для подготовки отчетов, рефератов и другой научно-технической документации.

### Краткое содержание практики

Выполнение задач, поставленных руководством предприятия и связанных с расчетами и испытаниями на прочность. Содержание практики, индивидуальное для каждого студента, обсуждается на кафедре.

# 2. Компетенции обучающегося, формируемые в результате прохождения практики

| Планируемые результаты освоения ОП   | Планируемые результаты обучения при    |
|--------------------------------------|----------------------------------------|
| ВО                                   | прохождении практики                   |
| УК-6 Способен определять и           | Знает:основные тенденции развития      |
| реализовывать приоритеты собственной | направлений работ в области прикладной |
| деятельности и способы ее            | механики, прочности и безопасности     |

| совершенствования на основе самооценки | конструкций.                            |
|----------------------------------------|-----------------------------------------|
|                                        | Умеет:самостоятельно работать с         |
|                                        | системой помощи, примерами в            |
|                                        | современных конечноэлементных           |
|                                        | пакетах;                                |
|                                        | Имеет практический                      |
|                                        | опыт:самостоятельного составления       |
|                                        | статьи в научный журнал; определения    |
|                                        | приоритетов профессионального роста и   |
|                                        | способов совершенствования собственной  |
|                                        | деятельности на основе самооценки       |
|                                        | Знает:области применения и возможности  |
|                                        | теоретических методов решения задач о   |
|                                        | прочности конструкций, особенности      |
|                                        | численной и программной реализации      |
|                                        | этих методов, возможности современных   |
|                                        |                                         |
| ОПК-1 Способен формулировать цели и    | экспериментальных методов               |
| задачи исследования, выявлять          | Умеет:применять теоретические,          |
| приоритеты решения задач, выбирать и   | расчетные и экспериментальные методы,   |
| создавать критерии оценки результатов  | необходимые для решения задач,          |
| исследований                           | возникающих при выполнении НИР          |
|                                        | Имеет практический опыт:формулировки    |
|                                        | цели и задач научного исследования,     |
|                                        | определения приоритетов решения задач;  |
|                                        | разработки критериев оценки             |
|                                        | исследований; анализа состояния научно- |
|                                        | технической проблемы                    |
|                                        | Знает:современные стандарты, ГОСТы,     |
|                                        | нормы прочности                         |
| ОПК-4 Способен разрабатывать           | Умеет:готовить сообщения, презентации,  |
| методические и нормативные документы,  | доклады, рефераты, статьи, отчеты       |
| в том числе проекты стандартов и       | Имеет практический опыт:поиска и        |
| сертификатов с учетом действующих      | анализа нормативных документов,         |
| стандартов качества, обеспечивать их   | регламентирующих различные аспекты      |
| внедрение на производстве              | профессиональной деятельности;          |
|                                        | оформления отчета о НИР в соответствии  |
|                                        | с нормативными документами              |
|                                        | Знает:современные отечественные и       |
|                                        | зарубежные наукометрические базы        |
|                                        | данных статей                           |
| ОПК-6 Способен осуществлять научно-    | Умеет:применять основные методы,        |
| исследовательскую деятельность,        | способы и средства получения, хранения, |
| используя современные информационно-   | переработки информации                  |
| коммуникационные технологии,           | Имеет практический опыт:использования   |
| глобальные информационные ресурсы      | библиографических систем хранения       |
| T T T T T T T T T T T T T T T T T T T  | статей; подготовки презентации и        |
|                                        | научного доклада с использованием       |
|                                        | информационно-коммуникативных           |
| I                                      | информационно-коммуникативных           |

| 1                                       |                                         |  |
|-----------------------------------------|-----------------------------------------|--|
|                                         | технологий                              |  |
|                                         | Знает:современные нормативные           |  |
|                                         | документы в области оформления          |  |
|                                         | результатов интеллектуальной            |  |
| ОПК-8 Способен осуществлять анализ      | деятельности                            |  |
| проектов стандартов, рационализаторских | Умеет:выполнять поиск и анализ патентов |  |
|                                         | и изобретений в сети интернет           |  |
|                                         | Имеет практический опыт:подачи заявки   |  |
| и заключения по их оценке               | на оформление результатов               |  |
|                                         | интеллектуальной деятельности           |  |
|                                         | (программа для ЭВМ, полезная модель     |  |
|                                         | или изобретение)                        |  |
|                                         | Знает: требования, предъявляемые к      |  |
|                                         | оформлению научно-технических отчетов   |  |
|                                         | и публикаций                            |  |
| ОПК-9 Способен представлять результаты  |                                         |  |
| исследования в области машиностроения   | выполненных научных исследований в      |  |
| в виде научно-технических отчетов и     | виде научно-технических отчетов и       |  |
| публикаций                              | публикаций                              |  |
|                                         | Имеет практический опыт:представления   |  |
|                                         | результатов НИР в виде отчета,          |  |
|                                         | презентации и научного доклада          |  |
|                                         | Знает:современные методы                |  |
|                                         | математического моделирования в         |  |
|                                         | области динамики и прочности машин и    |  |
|                                         | приборов; основные этапы разработки     |  |
|                                         | математических моделей                  |  |
|                                         | Умеет: создавать физико-механические,   |  |
| ОПК-10 Способен разрабатывать физико-   | математические и компьютерные модели    |  |
| механические, математические и          | в области прикладной механики и         |  |
| компьютерные модели при решении         | выполнять их критический анализ         |  |
| научно-технических задач в области      | Имеет практический опыт:применения      |  |
| прикладной механики                     | теоретических, расчетных и              |  |
|                                         | экспериментальных методов               |  |
|                                         | исследований для разработки физико-     |  |
|                                         | механических, математических и          |  |
|                                         | компьютерных моделей в области          |  |
|                                         | прикладной механики                     |  |
| ОПК-12 Способен создавать алгоритмы     | Знает:современные языки                 |  |
| цифровой обработки баз данных           | программирования (Fortran, C++, Matlab, |  |
| результатов испытаний и эксплуатации    | Руthon), скриптовые языки,              |  |
| сложных деталей и узлов в               | использующиеся в современных            |  |
| машиностроении, разрабатывать           | конечноэлементных пакетах               |  |
| современные цифровые программы          | Умеет:разрабатывать алгоритмы           |  |
| расчетов и проектирования деталей,      | обработки и создавать программы         |  |
| узлов, конструкций, машин и материалов  | обработки экспериментальных данных в    |  |
| с учетом требований надежности,         | современных системах компьютерной       |  |
| долговечности и безопасности их         | математики (Mathcad, Matlab)            |  |
| Montope moeth in occommendering his     | waterarrich (wanteau, wantau)           |  |

| эксплуатации | Имеет практический опыт:оставления |
|--------------|------------------------------------|
|              | программ на языке APDL для пакета  |
|              | прикладных программ Ansys          |

## 3. Место практики в структуре ОП ВО

| Перечень предшествующих дисциплин,      | Перечень последующих дисциплин, |
|-----------------------------------------|---------------------------------|
| видов работ                             | видов работ                     |
| 1.О.10 Теории пластичности и ползучести |                                 |
| 1.О.11 Технологии аналитической         |                                 |
| обработки информации                    |                                 |
| 1.О.02 История и методология науки и    |                                 |
| техники                                 |                                 |
| 1.О.06 Механика композитных             |                                 |
| материалов                              |                                 |
| 1.О.08 Проектирование умных             |                                 |
| конструкций                             |                                 |
| 1.О.09 Проектно-конструкторская         |                                 |
| подготовка производства                 |                                 |
| 1.О.12 Управление жизненным циклом      |                                 |
| изделия                                 |                                 |
| 1.О.05 Машинное обучение и технологии   |                                 |
| анализа данных                          |                                 |
| 1.О.07 Нормы прочности                  |                                 |
| Производственная практика (научно-      |                                 |
| исследовательская работа) (3 семестр)   |                                 |
| Производственная практика (научно-      |                                 |
| исследовательская работа) (2 семестр)   |                                 |
| Учебная практика (научно-               |                                 |
| исследовательская работа) (2 семестр)   |                                 |
| Производственная практика (научно-      |                                 |
| исследовательская работа) (1 семестр)   |                                 |

Требования к «входным» знаниям, умениям, навыкам студента, необходимым для прохождения данной практики и приобретенным в результате освоения предшествующих дисциплин:

| Дисциплина                   | Требования                                     |
|------------------------------|------------------------------------------------|
|                              | Знает: основные понятия и положения реологии,  |
|                              | методы математического и компьютерного         |
|                              | построения реологических моделей материала и   |
|                              | конструкции, классические теории (модели)      |
| 1.О.10 Теории пластичности и | пластичности и ползучести, а также особенности |
| ползучести                   | их реализации в математических пакетах         |
|                              | прикладных программ, основные положения и      |
|                              | принципы теории пластичности и ползучести;     |
|                              | виды и этапы разработки математической модели  |
|                              | материала; векторную форму записи тензоров     |

напряжений и деформаций; основные деформационные свойства материалов Умеет: применять теории (модели) пластичности и теории ползучести в практических задачах; составлять матричную модель МКЭ неупругой конструкции; понимать и объяснять феноменологические модели неупругой среды на основе принятых допущений, выбирать для решения конкретных инженерных задач реологические модели, привлекая для этого методы математического и компьютерного моделирования, идентифицировать параметры этих моделей Имеет практический опыт: составления матричной модели МКЭ неупругой конструкции, применения физико-математического аппарата, теоретических, расчетных и экспериментальных методов исследований, методов математического и компьютерного моделирования в процессе профессиональной деятельности; составления физико-механических математических компьютерных моделей неупругой конструкции Знает: этапы проектно-конструкторской подготовки производства; требования к проектноконструкторской документации; особенности работ, выполняемых на стадиях жизненного цикла создания изделий, методологию создания моделей, описывающих функционирование механических систем, их составных частей, узлов и агрегатов; руководящую, методическую и нормативную техническую документацию Умеет: анализировать проект с учетом альтернативных вариантов его реализации, определять целевые этапы, основные направления 1.О.09 Проектно-конструкторская работ; проводить патентные исследования, читать подготовка производства и анализировать проектную и рабочую конструкторскую документацию для определения состава и устройства изделия с получением необходимых данных для его разработки и изготовления Имеет практический опыт: оценки потребности в ресурсах и эффективности проекта; разработки всех этапов проектирования нового изделия, разработки технических предложений по созданию составных частей изделий, комплексов и систем, в том числе на основе цифрового моделирования .О.08 Проектирование умных Знает: программы расчетов и проектирования

#### конструкций

деталей, узлов, конструкций, машин и материалов; физико-математические и вычислительные методы, метод конечных элементов, основные требования, предъявляемые к проектной работе, этапы и критерии оценки результатов проектной деятельности, основные методы проектирования; компоненты CAD/CAM/CAE-систем Умеет: применять современные методы компьютерного моделирования в теоретических и расчетно-экспериментальных исследованиях прочности, устойчивости, надежности и долговечности, разрабатывать концепцию проекта в рамках обозначенной проблемы, формулируя цель, задачи, актуальность, значимость (научную, практическую, методическую и иную в зависимости от типа проекта), ожидаемые результаты и возможные сферы их применения, проводить проектирование деталей и узлов с использованием CAD- и CAE-систем; применять встроенные численные алгоритмы для решения прикладных задач

Имеет практический опыт: применения методов решения задач расчета на прочность при упругом деформировании, методов решения задач неупругого деформирования и контактного взаимодействия, составления плана-графика реализации проекта в целом и плана-контроля его выполнения, применения методов проектирования деталей и узлов конструкций

Знает: необходимые методы и средства для решения профессиональных задач на компьютере; методы машинного обучения в задачах анализа данных иособенности их применения, требования, предъявляемые к оформлению научнотехнических отчетов и публикаций, предмет, понятия, методы информационно-аналитической работы

1.О.11 Технологии аналитической обработки информации

Умеет: создавать алгоритмы цифровой обработки баз данных результатов испытаний и эксплуатации сложных деталей и узлов в машиностроении, оформлять результаты выполненных научных исследований в виде научно-технических отчетов и публикаций, использовать инструментарий информационно-аналитической работы; анализировать задачу, выделяя ее базовые составляющие, осуществлять декомпозицию задачи; критически анализировать информацию, необходимую для решения поставленной задачи;

рассматривать возможные варианты решения задачи, оценивая их достоинства и недостатки Имеет практический опыт: использования современных информационных технологий и специализированного программного обеспечения для обработки и представления информации в задачах профессиональной деятельности, представления результатов НИР в виде отчета, презентации и научного доклада, применения знаний о свойствах и характеристиках информации, в нахождении информации в различных источниках, определении главного и второстепенного, в упорядочивании, систематизировании и структурировании данных и знаний; нахождения адекватных средств для решения современных проблем, интерпретации и анализа полученных результатов

1.О.06 Механика композитных

материалов

Знает: вычислительные методы и компьютерные технологии для решения научно-технических проблем, возникающих в ходе профессиональной деятельности, современные коммуникативные технологии; основные принципы подготовки доклада и презентации, общие принципы и методы математического компьютерного моделирования в области композитных материалов и конструкций; современные технологии производства композитных материалов и конструкций; методы испытаний композитов, особенности структуры и свойств композитных материалов по сравнению с традиционными конструкционными материалами; современные методы математического моделирования в области использования композитных материалов и конструкций на микро-, мезо- и макроуровне рассмотрения неоднородностей структуры и свойств

Умеет: уметь выявлять сущность научнотехнических проблем, возникающих в ходе
профессиональной деятельности, и привлекать для
их решения соответствующий физикоматематический аппарат, применять современные
коммуникативные технологии, понимать
технические тексты на иностранном языке,
применять физико-математический аппарат,
вычислительные методы и компьютерные
технологии в профессиональной деятельности для
описания свойств композитных материалов и
конструкций, применять методы математического

|                              | и компьютерного моделирования в теоретических  |
|------------------------------|------------------------------------------------|
|                              | и расчетно-экспериментальных исследованиях     |
|                              | композитных материалов и конструкций;          |
|                              | оценивать эффективность и результативность     |
|                              | выбранных методов методов                      |
|                              | Имеет практический опыт: подготовки доклада на |
|                              | заданную тему и презентации; восприятия видео  |
|                              | по тематике курса на иностранном языке; чтения |
|                              | технических текстов на иностранном языке,      |
|                              | применения физико-математического аппарата,    |
|                              | методов математического и компьютерного        |
|                              | моделирования для разработки компьютерной      |
|                              | модели композитного материала, использования   |
|                              | методов математического и компьютерного        |
|                              | моделирования в теоретических и расчетно-      |
|                              | экспериментальных исследованиях композитных    |
|                              | материалов и конструкций                       |
|                              | Знает: основные программные средства для       |
|                              | разработки моделей машинного обучения;         |
|                              | необходимые методы и средства для решения      |
|                              | профессиональных задач на компьютере, методы   |
|                              | построения систем на базе искусственного       |
|                              | интеллекта                                     |
|                              | Умеет: разрабатывать алгоритмы цифровой        |
|                              | обработки баз данных результатов испытаний и   |
| 1.0.05.14                    | эксплуатации сложных деталей и узлов в         |
| 1.О.05 Машинное обучение и   | машиностроении, использовать результаты        |
| технологии анализа данных    | обработки больших массивов данных для          |
|                              | обучения нейронных сетей; вырабатывать         |
|                              | стратегию действий при решении практических    |
|                              | задач                                          |
|                              | Имеет практический опыт: создания              |
|                              | программного обеспечения для разработки систем |
|                              | с ИИ, самостоятельной разработки моделей       |
|                              | машинного обучения для решения                 |
|                              | профессиональных задач                         |
|                              | Знает: историю и тенденции развития подходов к |
|                              | решению задач прочности и безопасности         |
|                              | конструкций, мировые тенденции развития науки  |
|                              | о прочности, техники и технологий; современное |
|                              | состояние и перспективы исследований в области |
| 1.О.02 История и методология | прикладной механики                            |
| науки и техники              | Умеет: выбирать критерии прочности и методы    |
|                              | оценки для конкретных конструкций, оценивать   |
|                              | актуальность подходов к решению задач          |
|                              | прочности; определять направления              |
|                              | перспективных исследований в области           |
|                              | прикладной механики                            |
|                              |                                                |

|                             | И. коот теомический от те                      |
|-----------------------------|------------------------------------------------|
|                             | Имеет практический опыт: анализа критериев     |
|                             | прочности с точки зрения их применимости к     |
|                             | конкретным конструкциям, поиска и выбора       |
|                             | расчетных технологий, реализующих те или иные  |
|                             | подходы к решению задач прочности в области    |
|                             | прикладной механики с учетом мировых           |
|                             | тенденций развития науки, техники и технологий |
|                             | Знает: уровень современных мировых норм,       |
|                             | правил и стандартов в различных отраслях       |
|                             | промышленности, основные идеи и методы         |
|                             | расчетов, обеспечивающие построение            |
|                             | современной и перспективных систем             |
|                             | нормативно-технической документации в области  |
|                             | расчетов на прочность, состав и основные       |
|                             | положения нормативно-технической               |
|                             | документации, регламентирующей расчеты на      |
|                             | прочность                                      |
|                             | Умеет: собирать информацию о научных и         |
|                             | технологических положениях, лежащих в основе   |
|                             | анализируемых стандартов, определять список    |
|                             | требований, которые должны быть                |
| 1.О.07 Нормы прочности      | регламентированы разрабатываемым стандартом;   |
|                             | анализировать соответствие требованиям         |
|                             | нормативных документов, выполнять сравнение    |
|                             | уровней нормативно-технической документации    |
|                             | по расчетам на прочность, принятой в разных    |
|                             | отраслях промышленности                        |
|                             | Имеет практический опыт: анализа существующих  |
|                             | стандартов с точки зрения их соответствия      |
|                             | современному уровню науки, подготовки          |
|                             | простейших нормативных документов: программ-   |
|                             | методик испытаний, расчетов и т.п., выбора     |
|                             | подходов к решению задач прочности конкретных  |
|                             | конструкций и разделов нормативной             |
|                             | документации, регламентирнующих реализацию     |
|                             | этих подходов                                  |
|                             | Знает: современные технологии ускоренного      |
|                             | прототипирования элементов и конструкций на    |
|                             | базе 3D-печати и особенности верификации       |
|                             | элементов цифровых двойников изделия на этапе  |
|                             | проектирования и эксплуатации по результатам   |
| 1.О.12 Управление жизненным | испытаний образцов материалов и конструктивно- |
| _                           |                                                |
| циклом изделия              | подобных элементов, требования, предъявляемые  |
|                             | к оформлению и представлению результатов       |
|                             | анализа целесообразности и потенциальной       |
|                             | выгоды от внедрения передовых                  |
|                             | производственных технологий в бизнес-процессы  |
|                             | машиностроительного предприятия, основные      |

технико-экономические особенности внедрения и использования на машиностроительных предприятиях CAD-, CAE-, CAM-, PDM/PLM-, ERP-систем, передовых производственных технологий

Умеет: определять перечень мероприятий для создания и верификации элементов "цифровых двойников" изделий, позволяющих снизить количество дорогостоящих испытаний полноразмерных прототипов, структурировать информацию, полученную в ходе аналитического обзора литературы, и оформлять ее в виде презентации, основные технико-экономические особенности внедрения и использования на машиностроительных предприятиях CAD-, CAE-, CAM-, PDM/PLM-, ERP-систем, передовых производственных технологий Имеет практический опыт: разработки плана мероприятий по обеспечению требований прочности, жёсткости, устойчивости, стоимости при создании глобально-конкурентоспособных машиностроительных изделий и конструкций, представления в виде доклада, сопровождаемого презентацией, результатов оценки преимуществ, недостатков и сценариев использования передовых производственных технологий на машиностроительном предприятитии, разработки алгоритмов контроля и выполнения научнотехнических задач, поставленных перед исполнителями в рамках процессного управления на машиностроительных предприятиях; формулировки цели и задач; обоснования актуальности, значимости, ожидаемых результатов и возможные сферы их применения

Производственная практика (научно-исследовательская работа) (2 семестр)

Знает: требования, предъявляемые к оформлению научно-технических отчетов и публикаций, области применения и возможности теоретических методов решения задач о прочности конструкций, особенности численной и программной реализации этих методов, возможности современных экспериментальных методов, современные нормативные документы в области оформления результатов интеллектуальной деятельности, современные стандарты, ГОСТы, нормы прочности, современные языки программирования (Fortran, C++, Matlab, Python), скриптовые языки, использующиеся в современных

конечноэлементных пакетах, основные тенденции развития направлений работ в области прикладной механики, прочности и безопасности конструкций., современные отечественные и зарубежные наукометрические базы данных статей, современные методы математического моделирования в области динамики и прочности машин и приборов; основные этапы разработки математических моделей Умеет: оформлять результаты выполненных научных исследований в виде научно-технических отчетов и публикаций, применять теоретические, расчетные и экспериментальные методы, необходимые для решения задач, возникающих при выполнении НИР, выполнять поиск и анализ патентов и изобретений в сети интернет, готовить сообщения, презентации, доклады, рефераты, статьи, отчеты, разрабатывать алгоритмы обработки и создавать программы обработки экспериментальных данных в современных системах компьютерной математики (Mathcad, Matlab), самостоятельно работать с системой помощи, примерами в современных конечноэлементных пакетах; , применять основные методы, способы и средства получения, хранения, переработки информации, создавать физико-механические, математические и компьютерные модели в области прикладной механики и выполнять их критический анализ Имеет практический опыт: представления результатов НИР в виде отчета, презентации и научного доклада, формулировки цели и задач научного исследования, определения приоритетов решения задач; разработки критериев оценки исследований; анализа состояния научнотехнической проблемы, подачи заявки на оформление результатов интеллектуальной деятельности (программа для ЭВМ, полезная модель или изобретение), поиска и анализа нормативных документов, регламентирующих различные аспекты профессиональной деятельности; оформления отчета о НИР в соответствии с нормативными документами, составления программ на языке APDL для пакета прикладных программ Ansys, самостоятельного составления статьи в научный журнал; определения приоритетов профессионального роста и способов совершенствования собственной

деятельности на основе самооценки, использования библиографических систем хранения статей; подготовки презентации и научного доклада с использованием информационно-коммуникативных технологий, применения теоретических, расчетных и экспериментальных методов исследований для разработки физико-механических, математических и компьютерных моделей в области прикладной механики

Производственная практика (научно-исследовательская

работа) (3 семестр)

Знает: требования, предъявляемые к оформлению научно-технических отчетов и публикаций, современные отечественные и зарубежные наукометрические базы данных статей, основные тенденции развития направлений работ в области прикладной механики, прочности и безопасности конструкций., современные нормативные документы в области оформления результатов интеллектуальной деятельности, современные методы математического моделирования в области динамики и прочности машин и приборов; основные этапы разработки математических моделей, современные языки программирования (Fortran, C++, Matlab, Python), скриптовые языки, использующиеся в современных конечноэлементных пакетах, современные стандарты, ГОСТы, нормы прочности, области применения и возможности теоретических методов решения задач о прочности конструкций, особенности численной и программной реализации этих методов, возможности современных экспериментальных методов Умеет: оформлять результаты выполненных научных исследований в виде научно-технических отчетов и публикаций, применять основные методы, способы и средства получения, хранения, переработки информации, самостоятельно работать с системой помощи, примерами в современных конечноэлементных пакетах;, выполнять поиск и анализ патентов и изобретений в сети интернет, создавать физико-механические, математические и компьютерные модели в области прикладной механики и выполнять их критический анализ, разрабатывать алгоритмы обработки и создавать программы обработки экспериментальных данных в современных системах компьютерной математики (Mathcad, Matlab), готовить сообщения, презентации,

доклады, рефераты, статьи, отчеты, применять теоретические, расчетные и экспериментальные методы, необходимые для решения задач, возникающих при выполнении НИР Имеет практический опыт: представления результатов НИР в виде отчета, презентации и научного доклада, использования библиографических систем хранения статей; подготовки презентации и научного доклада с использованием информационнокоммуникативных технологий, самостоятельного составления статьи в научный журнал; определения приоритетов профессионального роста и способов совершенствования собственной деятельности на основе самооценки, подачи заявки на оформление результатов интеллектуальной деятельности (программа для ЭВМ, полезная модель или изобретение), применения теоретических, расчетных и экспериментальных методов исследований для разработки физико-механических, математических и компьютерных моделей в области прикладной механики, оставления программ на языке APDL для пакета прикладных программ Ansys, поиска и анализа нормативных документов, регламентирующих различные аспекты профессиональной деятельности; оформления отчета о НИР в соответствии с нормативными документами, формулировки цели и задач научного исследования, определения приоритетов решения задач; разработки критериев оценки исследований; анализа состояния научнотехнической проблемы

Учебная практика (научноисследовательская работа) (2 семестр) Знает: требования, предъявляемые к оформлению научно-технических отчетов и публикаций, современные методы исследования, методы оценки и представления результатов выполненной работы, знает современные информационно-коммуникационные технологии (научные социальные сети, информационные базы данных, средства видеоконференцсвязи), основные методы, способы и средства получения, хранения, переработки информации, основы ЕСКД, нормативно-правовые документы, регламентирующие выполнение расчетов на прочность и оформление отчетов о НИР Умеет: оформлять результаты выполненных научных исследований в виде научно-технических

отчетов и публикаций, анализировать результаты расчетов и экспериментов, формулировать выводы и рекомендации по совершенствованию исследуемого изделия или конструкции, искать научные публикации в библиотеках, базах данных и в сети интернет; составлять библиографическое описание, самостоятельно составлять аналитический обзор литературы по теме выполняемого научного исследования; оценивать свои личностные и временные ресурсы для успешного выполнения порученного задания, выполнять анализ отчетов о научноисследовательских работах на предмет соответствия их техническому заданию Имеет практический опыт: представления результатов НИР в виде отчета, презентации и научного доклада, использования современных конечноэлементных пакетов для исследования основных закономерностей деформирования и разрушения элементов конструкций различного назначения, составления аналитического обзора литературы по теме выполняемого научного исследования; анализа эффективности, полноты и достоверности информации, самостоятельного поиска современных литературных источников в отечественных и зарубежных базах данных, оформления отчетов о научно-исследовательской работе

Производственная практика (научно-исследовательская работа) (1 семестр)

Знает: требования, предъявляемые к оформлению научно-технических отчетов и публикаций, современные стандарты, ГОСТы, нормы прочности, современные нормативные документы в области оформления результатов интеллектуальной деятельности, современные языки программирования (Fortran, C++, Matlab, Python), скриптовые языки, использующиеся в современных конечноэлементных пакетах, основные тенденции развития направлений работ в области прикладной механики, прочности и безопасности конструкций, современные методы математического моделирования в области динамики и прочности машин и приборов; основные этапы разработки математических моделей, современные отечественные и зарубежные наукометрические базы данных статей, области применения и возможности теоретических методов решения задач о прочности конструкций, особенности численной и программной реализации этих методов, возможности современных экспериментальных методов

Умеет: оформлять результаты выполненных научных исследований в виде научно-технических отчетов и публикаций, готовить сообщения, презентации, доклады, рефераты, статьи, отчеты, выполнять поиск и анализ патентов и изобретений в сети интернет, разрабатывать алгоритмы обработки и создавать программы обработки экспериментальных данных в современных системах компьютерной математики (Mathcad, Matlab), самостоятельно работать с системой помощи, примерами в современных конечноэлементных пакетах;, создавать физикомеханические, математические и компьютерные модели в области прикладной механики и выполнять их критический анализ, применять основные методы, способы и средства получения, хранения, переработки информации, применять теоретические, расчетные и экспериментальные методы, необходимые для решения задач, возникающих при выполнении НИР Имеет практический опыт: представления результатов НИР в виде отчета, презентации и научного доклада, поиска и анализа нормативных документов, регламентирующих различные аспекты профессиональной деятельности; оформления отчета о НИР в соответствии с нормативными документами, подачи заявки на оформление результатов интеллектуальной деятельности (программа для ЭВМ, полезная модель или изобретение), оставления программ на языке APDL для пакета прикладных программ Ansvs, самостоятельного составления статьи в научный журнал; определения приоритетов профессионального роста и способов совершенствования собственной деятельности на основе самооценки, применения теоретических, расчетных и экспериментальных методов исследований для разработки физикомеханических, математических и компьютерных моделей в области прикладной механики, использования библиографических систем хранения статей; подготовки презентации и научного доклада с использованием информационно-коммуникативных технологий, формулировки цели и задач научного

| исследования, определения приоритетов решения    |
|--------------------------------------------------|
| задач; разработки критериев оценки исследований; |
| анализа состояния научно-технической проблемы    |

## 4. Объём практики

Общая трудоемкость практики составляет зачетных единиц 3, часов 108, недель 9.

## 5. Струкрура и содержание практики

| №<br>раздела<br>(этапа) | раздела Наименование или краткое содержание вида работ на                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1                       | Выбор направления исследования. Формулировка индивидуального задания на практику. Разработка плана и программы индивидуального задания. Формулировка цели и задач исследования. Обязанности студентов во время практики, правила ведения дневника практики. Требования к отчету о практике, презентации и докладу. Режим рабочего времени студентов при прохождении практики в организациях в соответствии с Трудовым кодексом РФ, соблюдение правил внутреннего распорядка объекта учебной практики. Результатом этапа работы является оформленный дневник практики.                                     | 4   |
| 2                       | Выполнение индивидуального задания под контролем руководителя практики. Основная форма взаимодействия с руководителем — индивидуальные консультации. Предусматривается проведение отдельных теоретических занятий, поиск и аналитический обзор литературы, самостоятельное изучение студентами нормативной и технической литературы, разработка необходимых расчетных моделей, проведение расчетов и испытаний. Производится подбор и согласование материалов для составления отчёта по практике. Ведется подготовка отчета по практике. Результатом этапа работы является оформленный отчет по практике. | 100 |
| 3                       | Ведется работа по подготовке презентации. Результатом этапа работы является оформленная презентация.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4   |

## 6. Формы отчетности по практике

По окончанию практики, студент предоставляет на кафедру пакет документов, который включает в себя:

- дневник прохождения практики, включая индивидуальное задание и характеристику работы практиканта организацией;
- отчет о прохождении практики.

Формы документов утверждены распоряжением заведующего кафедрой от 06.06.2016 №6.

# 7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по практике

Вид промежуточной аттестации – дифференцированный зачет. Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

## 7.1. Контрольные мероприятия (КМ)

| №<br>KM |   | Вид контроля        | Название<br>контрольного<br>мероприятия | Вес | Макс.балл | Порядок начисления<br>баллов                                                                                                                                                                                                                                                                                                         | Учитывается в П          |
|---------|---|---------------------|-----------------------------------------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1       | 4 | Текущий контроль    | Заполнение дневника практики            | 1   | 3         | 3 балла выставляется студенту, оформившему дневник в полном соответствии с требованиям методических рекомендаций; 2 балла выставляется студенту, заполнившего дневник практики полностью, но не в соответствии требованиями методических рекомендаций; 1 балл - дневник заполнен частично; 0 баллов - дневник не заполнен полностью. | дифференцирова:<br>зачет |
| 2       | 4 | Текущий<br>контроль | Составление отчета<br>по практике       | 1   | 52        | Отчёт по практике должен быть оформлен в соответствии с общими требованиями, предъявляемыми к отчётным                                                                                                                                                                                                                               | дифференцирова<br>зачет  |

должен включать в

себя титульный лист, листы заданий, оглавление, введение, основную часть, заключение, библиографический список и приложения (не обязательная часть). На титульном листе необходимо указывать все атрибуты работы и идентификационные сведения о студенте. После титульного листа представляется подписанное индивидуальное задание, график этапов проведения исследования. Далее следует аннотация и оглавление с указанием страниц. В отчёт в обязательном порядке включаются материалы согласно индивидуальному заданию, приводится список используемых источников информации. Отчет должен быть хорошо отредактирован и иллюстрирован графиками, диаграммами, схемами, рисунками. В конце отчета могут быть приведены приложения. Они обязательно должны быть пронумерованы, снабжены единообразными подписями и описаны в отчете (с какой целью

|  | прилагаются, как           |
|--|----------------------------|
|  | используются на            |
|  | практике). При             |
|  | оценивании                 |
|  | результатов                |
|  | мероприятия                |
|  | используется               |
|  | балльно-                   |
|  | рейтинговая                |
|  | система оценивания         |
|  | результатов учебной        |
|  | деятельности               |
|  | обучающихся                |
|  | (утверждена                |
|  | приказом ректора от        |
|  | 24.05.2019 г. No           |
|  | 179). При оценке           |
|  | работы студента за         |
|  | время практики             |
|  | принимается во             |
|  | внимание                   |
|  | содержание, объем          |
|  | и качество                 |
|  | оформления отчета          |
|  | по практике.               |
|  | Критерии                   |
|  | оценивания отчёта          |
|  | по практике:               |
|  | наличие                    |
|  | титульныого листа          |
|  | (2 балла); наличие         |
|  | реферата (5 баллов);       |
|  | наличие содержания         |
|  | (5 баллов); наличие        |
|  | обзора литературы          |
|  | (10 баллов);               |
|  | наличие основной           |
|  | части отчета о НИР         |
|  | (10 баллов);               |
|  | наличие заключения         |
|  | (5 баллов) логично         |
|  | и понятное                 |
|  | передано                   |
|  | содержание работы          |
|  | в тексте                   |
|  | пояснительной              |
|  | записки (5 баллов);        |
|  | четкость и                 |
|  | логичность                 |
|  | полученных                 |
|  | выводов и                  |
|  | рекомендаций (5            |
|  | рекомендации (3 баллов);   |
|  | оаллов), орфографическая и |
|  |                            |
|  | пунктуационная             |
|  | грамотность в              |

| _ | 1 | T                           | T                           | 1 |   |                                                                                                                                                                                                                                                                                       |                          |
|---|---|-----------------------------|-----------------------------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   |   |                             |                             |   |   | тексте отчёта (5 баллов).                                                                                                                                                                                                                                                             |                          |
| 3 | 4 | Текущий контроль            | Составление презентации     | 1 | 5 | 5 баллов - презентация содержит титульный слайд, цели, задачи, основную часть, выводы и полностью раскрывает суть выполненной работы, презентация содержит титульный слайд, цели, задачи, основную часть, выводы, но недостаточно полно раскрывает суть выполненной работы. 3 балла - | дифференцирован<br>зачет |
| 4 | 4 | Промежуточная<br>аттестация | Дифференцированный<br>зачет | 1 | 5 | 5 баллов - доклад по выполненной работе четко выстроен; автор прекрасно ориентируется в демонстрационном материале; показано владение специальным аппаратом;                                                                                                                          | дифференцирован<br>зачет |

|  |      |   | использованы        |
|--|------|---|---------------------|
|  |      |   | общенаучные и       |
|  |      |   | специальные         |
|  |      |   | термины, сделаны    |
|  |      |   | четкие выводы;      |
|  |      |   | обучающийся         |
|  |      |   | ответил четко и     |
|  |      |   | ясно на вопросы,    |
|  |      |   | заданные по         |
|  |      |   | результатам         |
|  |      |   | доклада. 4 балла -  |
|  |      |   | доклад четко        |
|  |      |   | выстроен, но есть   |
|  |      |   | неточности; автор   |
|  |      |   | ориентируется в     |
|  |      |   | демонстрационном    |
|  |      |   | материале; показано |
|  |      |   | владение            |
|  |      |   | специальным         |
|  |      |   | аппаратом;          |
|  |      |   | использованы        |
|  |      |   | общенаучные и       |
|  |      |   | специальные         |
|  |      |   | термины, сделаны    |
|  |      |   | выводы;             |
|  |      |   | обучающийся         |
|  |      |   | ответил             |
|  |      |   | недостаточно четко  |
|  |      |   | и ясно на вопросы,  |
|  |      |   | заданные по         |
|  |      |   | результатам         |
|  |      |   | доклада. 3 балла -  |
|  |      |   | доклад объясняет    |
|  |      |   | суть работы, но не  |
|  |      |   | полностью отражает  |
|  |      |   | содержание работы;  |
|  |      |   | представленный      |
|  |      |   | демонстрационный    |
|  |      |   | материал не         |
|  |      |   | полностью           |
|  |      |   | используется        |
|  |      |   | докладчиком;        |
|  |      |   | показано владение   |
|  |      |   | только базовым      |
|  |      |   | аппаратом; выводы   |
|  |      |   | имеются, но не      |
|  |      |   | доказаны; студент   |
|  |      |   | слабо отвечает на   |
|  |      |   | заданные после      |
|  |      |   | защиты вопросы. 2   |
|  |      |   | балла - доклад не   |
|  |      |   | объясняет суть      |
|  |      |   | работы;             |
|  |      |   | презентация         |
|  |      |   | содержит            |
|  | <br> |   | отрывочные          |
|  | •    | • | •                   |

|  |      | сведения о          |  |
|--|------|---------------------|--|
|  |      | результатах работы; |  |
|  |      | не показано         |  |
|  |      | владение            |  |
|  |      | специальным и       |  |
|  |      | базовым аппаратом;  |  |
|  |      | выводы не           |  |
|  |      | доказаны; нет       |  |
|  |      | ответов на вопросы  |  |
|  |      | 1 балл - доклад     |  |
|  |      | сделан, но          |  |
|  |      | демонстрационный    |  |
|  |      | материал            |  |
|  |      | (презентация) при   |  |
|  |      | докладе не          |  |
|  |      | использован. 0      |  |
|  |      | баллов —            |  |
|  |      | презентация и       |  |
|  | <br> | доклад отсутствуют  |  |

#### 7.2. Процедура проведения, критерии оценивания

Студент в установленные сроки сдаёт на кафедру отчёт по практике. Отчет должен содержать развернутые ответы на все вопросы, предусмотренные планом практики. Дата и время защиты отчета устанавливаются кафедрой в соответствии с календарным графиком учебного процесса. Оценивание проходит в форме публичной защиты студентом отчета по практике перед комиссией, назначаемой распоряжением заведующего кафедрой. Защита отчета по практике состоит в коротком докладе с презентацией (5-7 минут) студента и в ответах на вопросы по существу отчета. При оценивании результатов мероприятия используется балльнорейтинговая система оценивания результатов учебной деятельности обучающихся (в редакции приказа ректора от 10.03.2022 г № 25-13/09). Рейтинг, набранный на докладе, суммируется с рейтингом, набранным за мероприятия текущего контроля. Выставляется итоговая оценка за практику (дифференцированный зачет), которая проставляется в ведомость и зачетную книжку. Делается соответствующая отметка на титульном листе отчета.

#### 7.3. Оценочные материалы

| Компетенции | ции Результаты обучения                                                                                                                                                                                     |  | №<br>KM<br>234 |     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------|-----|
| IVK-D       | Знает: основные тенденции развития направлений работ в области прикладной механики, прочности и безопасности конструкций.                                                                                   |  | +              | +   |
| УК-6        | Умеет: самостоятельно работать с системой помощи, примерами в современных конечноэлементных пакетах;                                                                                                        |  | +              | +   |
| УК-6        | Имеет практический опыт: самостоятельного составления статьи в научный журнал; определения приоритетов профессионального роста и способов совершенствования собственной деятельности на основе самооценки   |  | +              | +   |
| ОПК-1       | Знает: области применения и возможности теоретических методов решения задач о прочности конструкций, особенности численной и программной реализации этих методов, возможности современных экспериментальных |  | +++            | - + |

|        | методов                                                                                                                                                                                                      |   |   | Π  |   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|---|
| ОПК-1  | Умеет: применять теоретические, расчетные и экспериментальные методы, необходимые для решения задач, возникающих при выполнении НИР                                                                          |   | + | +  | + |
| ОПК-1  | Имеет практический опыт: формулировки цели и задач научного исследования, определения приоритетов решения задач; разработки критериев оценки исследований; анализа состояния научно-технической проблемы     | + | + |    | + |
| ОПК-4  | Знает: современные стандарты, ГОСТы, нормы прочности                                                                                                                                                         | + | + | Ī  | + |
| ОПК-4  | Умеет: готовить сообщения, презентации, доклады, рефераты, статьи, отчеты                                                                                                                                    |   | + |    | + |
| ОПК-4  | Имеет практический опыт: поиска и анализа нормативных документов, регламентирующих различные аспекты профессиональной деятельности; оформления отчета о НИР в соответствии с нормативными документами        | + | + |    | + |
| ОПК-6  | Знает: современные отечественные и зарубежные наукометрические базы данных статей                                                                                                                            |   | + | +  | + |
| ОПК-6  | Умеет: применять основные методы, способы и средства получения, хранения, переработки информации                                                                                                             |   | + | +  | + |
| ОПК-6  | Имеет практический опыт: использования библиографических систем хранения статей; подготовки презентации и научного доклада с использованием информационно-коммуникативных технологий                         |   | + | +- | + |
| ОПК-8  | Знает: современные нормативные документы в области оформления результатов интеллектуальной деятельности                                                                                                      |   | + |    | + |
| ОПК-8  | Умеет: выполнять поиск и анализ патентов и изобретений в сети интернет                                                                                                                                       |   | + |    | + |
| ОПК-8  | Имеет практический опыт: подачи заявки на оформление результатов интеллектуальной деятельности (программа для ЭВМ, полезная модель или изобретение)                                                          |   | + |    | + |
| ОПК-9  | Знает: требования, предъявляемые к оформлению научно-технических отчетов и публикаций                                                                                                                        | + | + | +  | + |
| ОПК-9  | Умеет: оформлять результаты выполненных научных исследований в виде научно-технических отчетов и публикаций                                                                                                  | + | + |    | + |
| ОПК-9  | Имеет практический опыт: представления результатов НИР в виде отчета, презентации и научного доклада                                                                                                         | + | + | +  | + |
| ОПК-10 | Знает: современные методы математического моделирования в области динамики и прочности машин и приборов; основные этапы разработки математических моделей                                                    |   |   |    | + |
| ОПК-10 | Умеет: создавать физико-механические, математические и компьютерные модели в области прикладной механики и выполнять их критический анализ                                                                   |   |   |    | + |
| ОПК-10 | Имеет практический опыт: применения теоретических, расчетных и экспериментальных методов исследований для разработки физикомеханических, математических и компьютерных моделей в области прикладной механики |   |   |    | + |
| ОПК-12 | Знает: современные языки программирования (Fortran, C++, Matlab, Python), скриптовые языки, использующиеся в современных конечноэлементных пакетах                                                           |   | + |    | + |
| ОПК-12 | Умеет: разрабатывать алгоритмы обработки и создавать программы обработки экспериментальных данных в современных системах компьютерной математики (Mathcad, Matlab)                                           |   | + |    | + |
| ОПК-12 | Имеет практический опыт: оставления программ на языке APDL для пакета прикладных программ Ansys                                                                                                              |   | + |    | + |

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

## 8. Учебно-методическое и информационное обеспечение практики

#### Печатная учебно-методическая документация

#### а) основная литература:

- 1. Феодосьев, В. И. Сопротивление материалов Учеб. для втузов. 10-е изд., перераб. и доп. М.: Издательство МГТУ им. Н. Э. Баумана, 2000. 590,[1] с.
- 2. Каплун, А. Б. Ansys в руках инженера [Текст] практ. рук. А. Б. Каплун, Е. М. Морозов, М. А. Олферьева; предисл. А. С. Шадского. Изд. стер. М.: URSS: ЛИБРОКОМ, 2014. 269 с. ил.

#### б) дополнительная литература:

- 1. Стандарт организации. Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению: СТО ЮУрГУ 04-2008: взамен СТП ЮУрГУ 04-2001: введ. в действие с 01.09.08 [Текст] Н. В. Сырейщикова и др.; Юж.-Урал. гос. ун-т; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008. 55, [1] с. ил.
- 2. Басов, К. А. ANSYS [Текст] справ. пользователя К. А. Басов. 2-е изд., стер. М.: ДМК-Пресс, 2012. 639 с. ил.
- 3. Дьяконов, В. П. Mathcad 2000. СПб. и др.: Питер, 2000. 586 с. ил.
- 4. Кирьянов, Д. В. Mathcad 13 Наиболее полн. рук. Д. В. Кирьянов. СПб.: БХВ-Петербург, 2006. X,590 с.
- 5. Плис, А. И. Mathcad 2000: Математический практикум для экономистов и инженеров Учеб. пособие для вузов по экон. и техн. специальностям. М.: Финансы и статистика, 2000. 655 с. ил.

## из них методические указания для самостоятельной работы студента:

1. Щербакова А.О. Практика. Методические указания для бакалавров по направлению «Прикладная механика»: электронное методическое пособие кафедры ПМиДПМ ЮУрГУ/ А.О. Щербакова. – 2014. – 15 с.

## Электронная учебно-методическая документация

| Ŋº | Вид<br>литературы      | Наименование ресурса в электронной форме                       | Библиографическое описание                                                                                                                                                                                                                                                                                                                                                         |
|----|------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Основная<br>литература | Электронно-<br>библиотечная<br>система<br>издательства<br>Лань | Бурнаева, Э. Г. Обработка и представление данных в MS Excel: учебное пособие / Э. Г. Бурнаева, С. Н. Леора. — 2-е изд., стер. — Санкт-Петербург: Лань, 2018. — 156 с. — ISBN 978-5-8114-1923-4. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/108304 (дата обращения: 19.12.2021). — Режим доступа: для авториз. пользователей. |
| 2  | литература             | Электронно-<br>библиотечная<br>система<br>издательства         | Ковтанюк, Ю. С. Рисуем на компьютере в CorelDraw X3/X4.<br>Самоучитель: самоучитель / Ю. С. Ковтанюк. — Москва:<br>ДМК Пресс, 2009. — 544 с. — ISBN 978-5-94074-439-9. —<br>Текст: электронный // Лань: электронно-библиотечная                                                                                                                                                    |

|   |                              | Лань                                                           | система. — URL: https://e.lanbook.com/book/1156 (дата обращения: 19.12.2021). — Режим доступа: для авториз. пользователей.                                                                                                                                                                                                                                                                       |
|---|------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Дополнительная<br>литература | Электронно-<br>библиотечная<br>система<br>издательства<br>Лань | Бильфельд, Н. В. Методы MS Excel для решения инженерных задач: учебное пособие / Н. В. Бильфельд, М. Н. Фелькер. — Санкт-Петербург: Лань, 2020. — 164 с. — ISBN 978-5-8114-4609-4. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/136174 (дата обращения: 19.12.2021). — Режим доступа: для авториз. пользователей.                            |
| 4 | дополнительная<br>литература | Электронно-<br>библиотечная<br>система<br>издательства<br>Лань | Коротченко, И. С. Методические указания по созданию презентаций для защиты квалификационной работы в редакторе MS Power Point: методические указания / И. С. Коротченко. — Красноярск: КрасГАУ, 2014. — 28 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/103832 (дата обращения: 19.12.2021). — Режим доступа: для авториз. пользователей. |

## 9. Информационные технологии, используемые при проведении практики

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. PTC-MathCAD(бессрочно)
- 3. Dassault Systèmes-SolidWorks Education Edition 500 CAMPUS(бессрочно)
- 4. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых информационных справочных систем: Нет

## 10. Материально-техническое обеспечение практики

| Место прохождения<br>практики                         | Адрес места<br>прохождения          | Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, обеспечивающие прохождение практики                                                                                                                                               |
|-------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НОЦ «Композитные<br>материалы и<br>конструкции» ЮУрГУ | 454080,<br>Челябинск,<br>Ленина, 76 | Научно-образовательный центр оснащен современным экспериментальным оборудованием для проведения комплексных статических испытаний композитных материалов и элементов конструкций, компьютерами с выходом в Интернет и лицензионным программным обеспечением (общим и специализированным). |
| АО Конар                                              | 454010, г.<br>Челябинск,            | Центральная заводская лаборатория, оснащенная разрывной машиной для                                                                                                                                                                                                                       |

|                           | Енисейская, 8                 | механических испытаний и твердомером;    |
|---------------------------|-------------------------------|------------------------------------------|
|                           |                               | станочный парк, включающий               |
|                           |                               | оборудование и принадлежности,           |
|                           |                               | необходимые для изготовления и           |
|                           |                               | подготовки образцов к механическим       |
|                           |                               | испытаниям; персональный компьютер с     |
|                           |                               | выходом в Интернет и лицензионным        |
|                           |                               | программным обеспечением (как общего     |
|                           |                               | назначения, так и специализированным).   |
|                           |                               | Лаборатория, оснащенная современным      |
|                           |                               | экспериментальным оборудованием для      |
|                           |                               | проведения комплексных статических и     |
|                           |                               | динамических испытаний материалов и      |
|                           |                               | элементов конструкций.                   |
| l                         | 1.7.1000                      | Лаборатория, оснащенная современным      |
| "Лаборатория              | 454080,                       | экспериментальным оборудованием для      |
| экспериментальной         | челяоинск, пр-т<br>Ленина, 85 | проведения комплексных статических и     |
| механики", ЮУрГУ          |                               | динамических испытаний материалов и      |
|                           |                               | элементов конструкций;                   |
|                           |                               | компьютеры с выходом в Интернет и        |
|                           |                               | лицензионным программным                 |
|                           |                               | обеспечением (общим и                    |
|                           |                               | `                                        |
|                           |                               | специализированным).                     |
|                           |                               | Центральная заводская лаборатория,       |
|                           |                               | оснащенная разрывной машиной для         |
|                           | 454904, г.                    | механических испытаний и твердомером;    |
| АО "Трубодеталь"          | Челябинск, ул.                | персональный компьютер с выходом в       |
|                           | Челябинская, 23               | Интернет и лицензионным программным      |
|                           |                               | обеспечением (как общего назначения, так |
|                           |                               | и специализированным).                   |
|                           |                               | Центральная заводская лаборатория,       |
|                           |                               | оснащенная разрывной машиной для         |
|                           |                               | механических испытаний и твердомером;    |
| AO "Fo overom orra over o |                               | станочный парк, включающий               |
| АО "Государственный       | 456300, Миасс,                | оборудование и принадлежности,           |
| ракетный центр имени      | Тургодионо                    | необходимые для изготовления и           |
| академика В.П.Макеева"    | шоссе, 1                      | подготовки образцов к механическим       |
| г.Миасс                   | ,                             | испытаниям; персональный компьютер с     |
|                           |                               | выходом в Интернет и лицензионным        |
|                           |                               | программным обеспечением (как общего     |
|                           |                               | назначения, так и специализированным).   |
|                           |                               | Компьютерный класс – 12 шт. Компьютеры   |
|                           | 454080,                       | Intel Pentium Core i5, 8 Гб ОЗУ, 512 Мб  |
| Кафедра Техническая       | челябинск,                    | HDD, монитор Acer 23", клавиатура, мышь, |
| механика ЮУрГУ            | 1                             | -                                        |
|                           | Ленина, 85                    | предустановленное лицензионное ПО        |
| A **********              | 620017 -                      | Solidworks, Ansys, MathCAD               |
| Акционерное общество      | 620017, г.                    | персональный компьютер с выходом в       |
| "Опытное                  | Екатеринбург,                 | Интернет и лицензионным программным      |

| конструкторское бюро | пр.                                                    | обеспечением (как общего назначения, так                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Новатор", г.        | Космонавтов, 18                                        | и специализированным).                                                                                                                                                                                                                                                                                                                                                                   |
| Екатеринбург         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |
| АО Специальное       | 454007,<br>г.Челябинск, пр.<br>им. В.И.Ленина,<br>2"б" | Центральная заводская лаборатория, оснащенная разрывной машиной для механических испытаний и твердомером; станочный парк, включающий оборудование и принадлежности, необходимые для изготовления и подготовки образцов к механическим испытаниям; персональный компьютер с выходом в Интернет и лицензионным программным обеспечением (как общего назначения, так и специализированным). |