ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранитея в системе электронного документоборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranenkopa Пата подписания: 22.05.2022

П. А. Тараненко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.14 Физика для направления 15.03.03 Прикладная механика уровень Бакалавриат форма обучения очная кафедра-разработчик Оптоинформатика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 729

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доцент

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южн-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кундивова Н. Д. Повъзователь: kundikovand Цата подписания 2 10 s. 2022

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южргу Сжано-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Голубев Е. В. Подводатель: goluberev Jana подписания: 21 05 2022

Н. Д. Кундикова

Е. В. Голубев

1. Цели и задачи дисциплины

- изучение законов окружающего мира и их взаимосвязи; - овладение фундаментальными принципами и методами решения научно-технических задач; - формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми бакалавру придется сталкиваться при создании, развитии и/или использовании новой техники и новых технологий; - освоение основных физических теорий, позволяющих описать явлении в природе, и пределов применимости этих теорий для решения современных и перспективных профессиональных задач; - формирование у студентов основ естественнонаучной картины мира; - ознакомление студентов с историей и логикой развития физики и основных ее открытий.

Краткое содержание дисциплины

Физические основы механики: понятие состояния в классической механике, уравнения движения, законы сохранения, основы релятивистской механики, принцип относительности в механике, кинематика и динамика твердого тела, жидкостей и газов. Электричество и магнетизм: электростатика и магнитостатика в вакууме и веществе, уравнения Максвелла в интегральной и дифференциальной форме, материальные уравнения, квазистационарные токи, принцип относительности в электродинамике. Физика колебаний и волн: гармонический и ангармонический осциллятор, физический смысл спектрального разложения. кинематика волновых процессов, нормальные моды, интерференция и дифракция волн, элементы Фурье-оптики. Квантовая физика: корпускулярно-волновой дуализм, принцип неопределенности, квантовые состояния, принцип суперпозиции, квантовые уравнения движения, операторы физических величин, энергетический спектр атомов и молекул, природа химической связи. Статистическая физика и термодинамика: три начала термодинамики, термодинамические функции состояния, фазовые равновесия и фазовые превращения, элементы неравновесной термодинамики, классическая и квантовые статистики, кинетические явления, системы заряженных частиц, конденсированное состояние. Физический практикум.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности Знает: основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач Умеет: применять положения фундаментальной физики к грамотному научному анализу	Планируемые результаты освоения	Планируемые результаты
физические константы, их определение, смысл, способы и единицы их измерения; законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности физические константы, их определение, смысл, способы и единицы их измерения; законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач Умеет: применять положения фундаментальной физики к грамотному научному анализу	ОП ВО (компетенции)	обучения по дисциплине
создании, развитии или использовании новой	ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	Знает: основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при

	техники и новых технологий
	Имеет практический опыт: решения физических
	задач, теоретического и экспериментального
	исследования
	Знает: основные физические явления и основные
	законы физики; границы их применимости,
	применение законов в важнейших практических
	приложениях; назначение и принципы действия
	важнейших физических приборов
	Умеет: записывать уравнения для физических
	величин в системе СИ; работать с приборами и
ОПК-11 Способен выявлять естественнонаучную	оборудованием современной физической
сущность проблем, возникающих в ходе	лаооратории; использовать различные методики
профессиональной деятельности, привлекать для	измерений и обработки экспериментальных
их решения физико-математический аппарат и	данных; использовать методы адекватного
современные компьютерные технологии	физического и математического моделирования,
cosponentiste kominstorepriste realionari	а также применять методы
	физикоматематического анализа к решению
	конкретных естественнонаучных и технических
	проблем
	Имеет практический опыт: применения методов
	обработки и интерпретации результатов
	измерений, навыков обработки
	экспериментальных данных

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
	1.О.21 Механика жидкости и газа,
1.О.10 Математический анализ	1.О.25 Электротехника и электроника,
	1.О.22 Термодинамика и теплопередача

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: основные математические положения,
	законы, основные формулы и методы решения
	задач разделов дисциплин математического
	анализа, фундаментальные основы разделов
	математического анализа, необходимые для
	освоения других дисциплин и самостоятельного
	приобретения знаний Умеет: самостоятельно
1.О.10 Математический анализ	работать с учебной, справочной и учебно-
1.0.10 Matematin-tecknin analins	методической литературой; доказывать теоремы,
	вычислять определенные интегралы по фигуре;
	характеризовать векторные поля; находить
	циркуляцию и поток векторного поля; применять
	интегралы к решению простых прикладных
	задач; составлять модели реальных процессов и
	проводить их анализ, решать типовые примеры и
	использовать математические методы в решении

профессиональных задач Имеет практический опыт: анализа и синтеза информации, а также
1 1
употребления математических символов для
выражения количественных и качественных
отношений объектов; навыками символьных
преобразований математических выражений,
использования методов математического анализа
и моделирования в решении профессиональных
задач

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 11 з.е., 396 ч., 203 ч. контактной работы

D		Распределение по семестрам в часах			
Вид учебной работы	часов	Номер семестра			
		2	3		
Общая трудоёмкость дисциплины	396	180	216		
Аудиторные занятия:	176	80	96		
Лекции (Л)	80	32	48		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	48	32	16		
Лабораторные работы (ЛР)	48	16	32		
Самостоятельная работа (СРС)	193	87,5	105,5		
с применением дистанционных образовательных технологий	0				
Решение задач	45,55	30.27	15.28		
Усвоение теоретического материала	76,1	30.27	45.83		
Подготовка к экзамену	25,67	11.83	13.84		
Подготовка к лабораторным работам	45,68	15.13	30.55		
Консультации и промежуточная аттестация	27	12,5	14,5		
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен	экзамен		

5. Содержание дисциплины

<u>№</u> раздела	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
		Всего	Л	ПЗ	ЛР	
1 1	Механика. Колебания и волны. Термодинамика и молекулярная физика.	80	32	32	16	
	Электричество и магнетизм. Электромагнитные колебания и волны. Оптика. Квантовая физика. Элементы ядерной физики и физики элементарных частиц. Физическая картина Мира	96	48	16	32	

5.1. Лекции

$N_{\underline{0}}$	No	Наименование или краткое содержание лекционного занятия	Кол-
---------------------	----	---	------

лекции	раздела		во часов
1	1 1	Основные понятия и определения механики. Кинематика материальной точки. Ускорение при криволинейном движении	2
2	1	Первый закон Ньютона. Инерциальные системы отсчета. Второй закон Ньютона. Принцип независимости действия сил. Единицы измерения, размерности и названия физических величин. Третий закон Ньютона. Сила тяжести и вес тела. Импульс материальной точки и системы материальных точек. Движение точки переменной массы. Уравнение Мещерского. Формула Циолковского. Центр масс системы материальных точек. Теорема о движении центра масс	2
3	1	Закон сохранения импульса. Работа силы. Мощность силы. Кинетическая и потенциальная энергия. Закон сохранения полной механической энергии	2
4	1	Кинематика абсолютно твердого тела. Характеристики вращательного движения тела. Связь между векторами υ и ω. Плоское движение тела. Динамика тела. Движение центра масс абсолютно твердого тела при поступательном движении. Динамика вращательного движения тела. Моменты силы и импульса относительно оси	2
5		Момент инерции тела. Уравнение динамики вращательного движения тела. Закон сохранения момента импульса системы тел. Работа внешних сил и кинетическая энергия тела при вращении и плоском движении	2
6		Механические колебания и волны. Свободные гармонические колебания. Гармонический осциллятор. Маятники (пружинный, физический, оборотный, математический)	2
7		Сложение колебаний одного направления и одинаковой частоты. Биения. Сложение взаимно перпендикулярных колебаний. Свободные затухающие колебания	2
8		Вынужденные гармонические колебания. Механический резонанс. Механические (упругие) волны и их характеристики. Уравнение бегущей волны. Интерференция упругих волн. Стоячие волны.	2
9	1	Термодинамическая система и ее параметры. Уравнение состояния. Молекулярно-кинетическая теория идеального газа. Основные понятия и определения. Уравнение Менделеева—Клапейрона, вириальное уравнение состояния. Барометрическая формула. Реальные газы. Силы и энергия межмолекулярного взаимодействия в газах. Уравнение Дюпре, Дитеричи и Ван дер Вальса. Изобары и изотермы реального газа. Изотермы Ван дер Вальса и их анализ. Критическая изотерма	2
10		Основное уравнение молекулярно-кинетической теории газов. Закон распределения энергии молекул по степеням свободы. Закон Максвелла распределения молекул идеального газа по скоростям и энергиям теплового движения.	2
11		Явления переноса в газах. Средняя длина свободного пробега молекул. Внутреннее трение. Вязкость. Теплопроводность газов. Диффузия в газах.	2
12		Внутренняя энергия термодинамической системы. Теплота и работа. Первый закон термодинамики. Теплоемкость вещества. Уравнение Майера. Изопроцессы идеального газа. Внутренняя энергия реального газа. Критическая изотерма. Эффект Джоуля–Томпсона. Сжижение газов.	2
13	1	Адиабатный процесс. Круговые процессы (циклы). Обратимые и необратимые процессы. Второй закон термодинамики. Цикл Карно.	2
14		Энтропия и свободная энергия. Статистическое истолкование второго закона термодинамики. Формулировка теоремы Нернста и ее толкование с применением статистического определения энтропии.	2
15	1	Элементы специальной теории относительности. Постулаты Эйнштейна. Преобразования Лоренца.	2

	т	-	
16	1	Релятивистский импульс. Релятивистская механика. Полная энергия частицы. Закон сохранения импульса-энергии.	2
17	2	Электрические заряды. Закон Кулона. Электростатическое поле. Вектор напряженности поля. Теорема Остроградского—Гаусса для электрического поля в вакууме. Расчет полей, создаваемых заряженными телами: плоскость, две параллельные плоскости, сфера, шар, цилиндрическая поверхность.	2
18	2	Работа сил электростатического поля. Потенциал. Связь между напряженностью электростатического поля и его потенциалом. Расчёт потенциалов различных электростатических полей.	2
19	2	Свободные и связанные заряды. Электрический диполь. Типы диэлектриков. Полярные и неполярные молекулы. Поляризованность. Электрическое поле в диэлектрике. Теорема Остроградского—Гаусса для электростатического поля и диэлектрике. Электрическое смещение. Сегнетоэлектрики.	2
20	2	Проводники в электростатическом поле. Электроемкость уединенного проводника. Взаимная электроемкость. Конденсаторы. Соединение конденсаторов. Энергия электростатического поля.	2
21	2	Электрический ток. Условия существования тока. Природа электрического тока в металлах. Классическая электронная теория электропроводимости металлов. Недостатки теории. Электродвижущая сила. Обобщенный закон Ома в интегральной форме. Работа и мощность тока. Закон Джоуля—Ленца. Правила Кирхгофа для электрических цепей.	2
22	2	Магнитное поле. Вектор магнитной индукции. Закон Ампера. Закон Био—Савара—Лапласа. Магнитное поле прямолинейного проводника с током. Магнитное поле кругового тока. Магнитный момент. Закон полного тока. Магнитное поле соленоида.	2
23	2	Сила Лоренца. Движение заряженных частиц в однородном магнитном поле. Эффект Холла. Сила Ампера.	2
24	2	Явление электромагнитной индукции. Закон Фарадея. Электромагнитная индукция в движущемся проводнике. Э.д.с. индукции в проводящей рамке, вращающейся в магнитном поле. Токи Фуко. Скин-эффект. Индуктивность проводящего контура. Самоиндукция. Токи при замыкании и размыкании цепи с постоянными L и R. Энергия магнитного поля.	2
25	2	Магнитные моменты электронов и атомов. Диа- и парамагнетики. Намагниченность. Магнитное поле в веществе. Ферромагнетики. Природа ферромагнетизма.	2
26	2	Основы теории Максвелла для электромагнитного поля. Первое уравнение Максвелла. Второе уравнение Максвелла. Ток смещения. Система уравнений Максвелла.	2
27	2	Электромагнитные колебания и волны. Колебательный контур. Вынужденные электромагнитные колебания. Амплитуда и фаза вынужденных электромагнитных колебаний. Резонанс токов. Резонанс напряжений. Превращение энергии в колебательном контуре.	2
28	2	Уравнение электромагнитной волны. Опыты Герца. Свойства электромагнитной волны. Энергия электромагнитной волны. Вектор Умова—Пойнтинга. Излучение диполя. Шкала электромагнитных волн.	2
29	2	Основные законы оптики. Принцип Ферма. Уравнение световой волны. Когерентные волны. Время и длина когерентности. Интерференция света. Условие максимума и минимума освещенности. Интерференционная картина от двух источников света. Положения максимумов и минимумов освещенности. Интерференция в тонких пленках. Кольца Ньютона.	2
30	2	Дифракция света. Принцип Гюйгенса—Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели. Дифракционная решетка.	2
31	2	Пространственная дифракционная решетка. Дифракция рентгеновских лучей.	2

		Взаимодействие электромагнитных волн с веществом. Дисперсия света. Электронная теория дисперсии света. Поглощение света. Излучение Вавилова—Черенкова.	
32	2	Естественный и поляризованный свет. Закон Малюса. Поляризация света при отражении и преломлении. Двойное лучепреломление. Искусственная оптическая анизотропия. Вращение плоскости поляризации.	2
33	2	Тепловое излучение и его характеристики. Закон Кирхгофа. Закон Стефана—Больцмана. Закон Вина. Формула Рэлея—Джинса. Ультрафиолетовая катастрофа. Квантовая гипотеза и формула Планка. Оптическая пирометрия.	2
34	2	Уравнение Эйнштейна для внешнего фотоэффекта. Внутренний и внешний фотоэффекты. Масса и импульс фотона. Давление света. Эффект Комптона. Корпускулярно-волновой дуализм электромагнитного излучения. Опыты Резерфорда. Модели атома. Опыт Франка и Герца. Закономерности в спектре атома водорода. Постулаты Бора. Теория Бора строения атома водорода. Гипотеза де Бройля. Волновые свойства вещества.	2
35	2	Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.	2
36	2	Свойства волновой функции. Квантование энергии и импульса. Микрочастицы в потенциальной яме. Квантово-механическая модель атома водорода. Вырожденные состояния атома водорода.	2
37	2	Основное и возбуденные состояния электрона в атоме водорода. Спин электрона и спиновое магнитное квантовое число. Распределение электронов в атоме по энергетическим уровням. Принцип запрета Паули. Периодическая система химических элементов Д.И. Менделеева.	2
38	2	Квантово-механическая модель молекулы. Спонтанное и вынужденное излучение. Оптические квантовые генераторы. Понятие о квантовой статистике. Функция распределения. Распределение электронов проводимости в металле по энергиям. Энергетические зоны в кристаллах. Собственная проводимость полупроводников. Примесная проводимость проводников. Контакт электронного и дырочного полупроводников. Полупроводниковые диоды и триоды (транзисторы).	2
39	2	Состав и характеристика атомного ядра. Масса и энергия связи ядра. Радиоактивность. Закон радиоактивного распада. Фундаментальные взаимодействия. Природа ядерных сил. Ядерные реакции. Деление ядер. Термоядерные реакции.	2
40	2	Элементарные частицы. Фундаментальные взаимодействия и основные классы элементарных частиц. Частицы и античастицы. Лептоны и адроны. Кварки. Электрослабое взаимодействие. Физическая картина мира. Методология современных научно—исследовательских программ в области физики. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Революционные изменения в технике и технологиях как следствие научных достижений в области физики.	2

5.2. Практические занятия, семинары

№ занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Кинематика материальной точки	2
2	1	Динамика материальной точки. Динамика точки переменной массы.	2
3	1	Импульс. Закон сохранения импульса.	2
4	1	Кинематика вращательного движения абсолютно твердого тела	2
4	1	Работа, мощность, энергия. Закон сохранения механической энергии	2
5	1	Динамика вращательного движения абсолютно твердого тела	2

		Закон сохранения момента импульса. Работа, мощность, энергия при	_	
6	1	вращательном движении.	2	
7	1	Механические гармонические колебания. Сложные колебания. Маятники	2	
8	1	Затухающие и вынужденные механические колебания. Механические (упругие) волны	2	
10	1	Законы идеальных газов	2	
11	1	Молекулярно-кинетическая теория газов	2	
12	12 1 Физические основы термодинамики			
13	1	Элементы статистической физики	2	
14	1	Явления переноса	2	
15	1	Реальные газы	2	
16	1	Элементы специальной теории относительности	2	
17	2	Закон Кулона. Напряженность электрического поля. Теорема Остроградского-Гаусса. Работа перемещения электрических зарядов в электрическом поле. Потенциал электрического поля.	2	
18	2	Электроемкость. Энергия электрического поля. Законы Ома для однородного и неоднородного участка, замкнутой цепи.	2	
19	2	Закон Ампера и Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов. Магнитный момент. Закон полного тока	2	
20	2	Магнитный поток. Работа перемещения проводника и контура с током в магнитном поле. Сила Лоренца. Электромагнитная индукция. Энергия магнитного поля.	2	
21	2	Электромагнитные колебания и волны.	2	
22	2	Интерференция света. Дифракция света. Поляризация света.	2	
23	2	Тепловое излучение. Фотоэффект. Давление света. Фотоны. Атом Бора.	2	
24	2	Волновые свойства микрочастиц. Закон радиоактивного распада. Ядерные реакции. Элементарные частицы.	2	

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	1	Вводная работа. Определение ускорения свободного падения	2
2	1	М-1. Изучение явления удара шаров	2
3	1	M-3. Изучение закона динамики вращательного движения с помощью маятника Обербека	2
4	1	M-7. Определение ускорения свободного падения с помощью оборотного маятника	2
5	1	М-8. Закон сохранения момента импульса	2
6	1	М-9. Изучение вынужденных колебаний	2
7	1	М-10. Изучение собственных колебаний струны	2
8	1	М-11. Изучение звуковых волн в воздухе	2
9	2	Э-1. Изучение электростатического поля методом моделирования	2
10	2	Э-2. Определение электроёмкости конденсатора	2
11	2	Э-3. Определение удельного сопротивления проводника	2
12	2	Э-6. Определение удельного заряда электрона	2
13	2	Э-8. Изучение свойств ферромагнетика с помощью петли гистерезиса	2
14	2	Э-11. Определение точки Кюри ферримагнетика	2
15	2	Э-12. Изучение электромагнитных затухающих колебаний	2

16	2	О-1. Определение радиуса кривизны линзы	2
17	2	О-2. Измерение длины световой волны	2
18	2	О-3. Измерение показателя преломления воздуха	2
19	2	О-4. Определение угла полной поляризации и проверка закона Малюса	2
20	2	О-6. Определение поглощательной способности вольфрама	2
21	2	О-8. Снятие спектральной характеристики фотоэлемента и определение работы выхода электрона	2
22	2	О-9. Изучение температурной зависимости сопротивления полупроводников и определение энергии активации проводимости	2
23	2	О-10. Изучение α-распада	2
24	2	О-11. Измерение верхней границы энергии бета-спектра	2

5.4. Самостоятельная работа студента

	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Решение задач	Чертов, А. Г. Задачник по физике: учеб. пособие для втузов / А. Г. Чертов, А. А. Воробьев Глава 5. Электромагнетизм § 21. Магнитное поле постоянного тока (236). § 22. Сила, действующая на проводник с током в магнитном поле (246). § 23. Сила, действующая на заряд, движущийся в магнитном поле (254). § 24. Закон полного тока. Магнитный поток Магнитные цепи (261) § 25 Работа перемещения проводника с током в магнитном поле Электромагнитная индукция. Индуктивность (267). § 26. Энергия магнитного поля (276). § 27. Электромагнитные колебания и волны (279) Глава 6. Оптика § 28. Геометрическая оптика (282). § 29. Фотометрия (291). § 30. Интерференция света (295). § 31. Дифракция света (305). § 32. Поляризация света (313). § 33. Оптика движущихся гел (320). Глава 7. Квантовооптические явления. Физика атома § 34. Законы теплового излучения (325). § 35. Фотоэлектрический эффект. (329). § 36. Давление света. Фотоны (333). § 37. Эффект Комптона (336). § 38. Атом водорода по теории Бора (339) § 39 Рентгеновское излучение (341) § 40. Волны де Бройля (344) Глава 8. Физика атомного ядра и элементарных частиц § 41. Строение атомных ядер Радиоактивность (348). § 42. Элементы дозиметрии ионизирующих излучений (353). § 43 Дефект массы и энергия связи атомных ядер (358). § 44. Ядерные реакции (361). Глава 9. Элементы квантовой механики § 45. Волновые свойства микрочастиц (367). § 46. Простейшие случаи движения микрочастиц (371). § 47. Строение атома (382). § 48. Спектры молекул (394).	3	15,28
Усвоение теоретического материала	1. Сивухин, Д.В. Общий курс физики. Том 3. Электричество. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2009. — 656 с. — Режим доступа: http://e.lanbook.com/book/2317 Глава III—X (с. 213–667) 2. Сивухин, Д.В. Общий курс физики. Том 4 Оптика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2002. — 792 с. — Режим доступа: http://e.lanbook.com/book/2314 Глава I—XI (с. 9–739) 3. Сивухин, Д.В. Общий курс физики Том 5 Атомная и ядерная физика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2002. — 784 с. — Режим доступа: http://e.lanbook.com/book/2315 Глава I—	3	45,83

			1
	VII (с. 7–410) 4. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2017. — 500 с. — Режим доступа: http://e.lanbook.com/book/91065 Глава VI— XVIII. (с. 124–416). 5. Савельев, И.В. Курс общей физики. В 3-х тт. Т.З. Квантовая оптика. Атомная физика. Физика твердого тела. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2011. — 320 с. — Режим доступа: http://e.lanbook.com/book/2040 Глава I— XV. (с. 7–407) 6. Физика для бакалавров: учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич — Челябинск: Издательский центрЮУрГУ, 2013. — Ч. II. — 222 с. http://www.phys.susu.ru/lit/fizika2.pdf §1— §98 (с. 3–216) 1. Сивухин, Д.В. Общий курс физики. Том 1 Механика. [Электронный ресурс] — Электрон. дан. — М. : Физматлит, 2010. — 560 с. — Режим доступа: http://e.lanbook.com/book/2313 Глава I— X (с. 16–428) 2. Сивухин, Д.В. Общий курс физики Том 2 Термодинамика и молекулярная физика. [Электронный ресурс] — Электрон. дан. — М. : Физматлит, 2006. — 544 с. — Режим доступа: http://e.lanbook.com/book/2316 Глава I—X (с. 16–484) 3. Сивухин, Д.В. Общий курс физики. Том 3. Электричество.		
Подготовка к экзамену	[Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2009. — 656 с. — Режим доступа: http://e.lanbook.com/book/2317 Глава I— II (с. 16–212) 4. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2016. — 436 с. — Режим доступа: http://e.lanbook.com/book/71760 Глава I— XVII (с. 12–401) 5. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2017. — 500 с. — Режим доступа: http://e.lanbook.com/book/91065 Глава I— V. (с. 11–123) 6. Физика для бакалавров: учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич — Челябинск: Издательский центр ЮУрГУ, 2013. — Ч. І. — 162 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000236374 §1– §70 (с. 5–159)	2	11,83
Подготовка к лабораторным работам	Электричество и магнетизм: учебное пособие для выполнения пабораторных работ / А.А. Шульгинов, Ю.В. Петров. – Челябинск: Издательский центр ЮУрГУ, 2018. – 186 с. Лабораторная работа Э-6. Определение удельного заряда электрона методом магнетрона (с. 52) Лабораторная работа Э-7. Изучение эффекта Холла в полупроводниках (с. 62) Лабораторная работа Э-8. Изучение свойств ферромагнетика с помощью петли гистерезиса (с. 71) Лабораторная работа Э-9. Построение кривой намагничивания ферромагнетика методом Столетова (с. 84) Лабораторная работа Э-10. Изучение зависимости магнитной проницаемости ферромагнетика от напряжённости магнитного поля (с. 90) Лабораторная работа Э-11. Определение температуры Кюри и магнитного момента кристаллической ячейки ферримагнетика (с. 96) Лабораторная работа Э-12. Изучение электромагнитных затухающих колебаний (с. 107) Лабораторная работа Э-13. Исследование явления резонанса в электрических цепях переменного тока (с. 119) Лабораторная работа Э-14. Изучение вынужденных электрических колебаний в контуре, содержащем катушку индуктивности с ферромагнитным сердечником (с. 130) Лабораторная работа Э-15. Изучение свойств сегнетоэлектриков в переменном электрическом поле (с. 136) Лабораторная работа Э-	3	30,55

	16. Изучение электронно-дырочного перехода в полупроводниках (с. 149) Лабораторная работа Э-17. Туннельный эффект в вырожденном р-п переходе (с. 159) Оптика и ядерная физика: учебное пособие для выполнения лабораторных работ / А.М. Герасимов, В.Ф. Подзерко, В.А. Старухин. — Челябинск: Издательский центр ЮУрГУ, 2018. — 81 с. Работа № 1. Определение радиуса кривизны линзы (с. 3) Работа № 2. Измерение длины световой волны (с. 9) Работа № 3. Измерение показателя преломления воздуха (с. 14) Работа № 4. Определение угла полной поляризации и проверка закона Малюса (с. 20) Работа № 5. Изучение дифракции Фраунгофера (с. 28) Работа № 6. Определение поглощательной способности вольфрама (с. 35) Работа № 7. Исследование спектра испускания твердых тел (с. 41) Работа № 8. Определение спектральной характеристики фотоэлемента и работы выхода электрона (с. 44) Работа № 9. Изучение температурной зависимости сопротивления полупроводников и определение энергии активации проводимости (с. 49) Работа № 10. Изучение α-распада (с. 54) Работа № 11. Измерение верхней границы энергии бета-спектра (с. 60) Работа № 12. Измерение температуры и степени черноты тела методом спектральных отношений (с. 69) Работа № 13. Исследование внешнего фотоэффекта (с. 74) Механика. Молекулярная физика. Термодинамика: учебное пособие по выполнению лабораторных работ / С.Ю. Гуревич, Е.В. Голубев, Е.Л. Шахин. — Челябинск: Изд-во ЮУрГУ, 2017. Вводная работа. Определение ускорения свободного падения (с. 15) Работа М-1. Изучение явления удара шаров (с. 18) Работа М-2. Определение скорости пули (с. 26) Работа М-3. Изучение закона динамики вращательного движения с помощью маятника Обербека (с. 31) Работа М-4. Определение коэффициента восстановления при ударе твердых тел (с. 37) Работа М-5. Определение момента		
Подготовка к лабораторным работам	помощью оборотного маятника (с. 57) Работа М-8. Закон сохранения момента импульса (с. 62) Работа М-9. Изучение вынужденных колебаний (с. 69) Работа М-10. Изучение собственных колебаний струны (с. 73) Работа М-11. Изучение звуковых волн в воздухе (с. 77) Работа М-12. Изучение затухающих колебаний (с. 81) Работа М-13. Изучение изотермического процесса реального газа (с. 85) Работа М-14. Определение коэффициента вязкости жидкости (с. 89) Работа М-15. Изучение вязкости воздуха (с. 93) Работа М-16. Определение отношения теплоемкостей воздуха (с. 98) Электричество и магнетизм: учебное пособие для выполнения лабораторных работ / А.А. Шульгинов, Ю.В. Петров. – Челябинск: Издательский центр ЮУрГУ, 2018. – 186 с. Лабораторная работа Э-1. Изучение электростатического поля методом моделирования (с. 9) Лабораторная работа Э-2. Определение электроёмкости конденсатора с помощью интегратора тока (с. 18) Лабораторная работа Э-3. Определение удельного сопротивления проводника (с. 27) Лабораторная работа Э-4. Изучение температурной зависимости сопротивления металла и полупроводника (с. 36)	2	15,13
Усвоение теоретического материала	1. Сивухин, Д.В. Общий курс физики. Том 1 Механика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2010. — 560 с. — Режим доступа: http://e.lanbook.com/book/2313 Глава I—	2	30,27

	Х (с. 16–428) 2. Сивухин, Д.В. Общий курс физики Том 2 Термодинамика и молекулярная физика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2006. — 544 с. — Режим доступа: http://e.lanbook.com/book/2316 Глава I—Х (с. 16–484) 3. Сивухин, Д.В. Общий курс физики. Том 3. Электричество. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2009. — 656 с. — Режим доступа: http://e.lanbook.com/book/2317 Глава I—II (с. 16–212) 4. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2016. — 436 с. — Режим доступа: http://e.lanbook.com/book/71760 Глава I— XVII (с. 12–401) 5. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2017. — 500 с. — Режим доступа: http://e.lanbook.com/book/91065 Глава I— V. (с. 11–123) 6. Физика для бакалавров: учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич — Челябинск: Издательский центр ЮУрГУ, 2013. — Ч. І. — 162 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000236374 §1— §70 (с. 5–159)		
Решение задач	Чертов, А. Г. Задачник по физике: учеб. пособие для втузов / А. Г. Чертов, А. А. Воробьев Глава 1. Физические основы механики § 1. Кинематика (5). § 2. Динамика материальной точки в тела, движущегося поступательно (18). § 3. Динамика вращательного движения (39). § 4. Силы в механике 157). § 5. Релятивистская механика (71). § Механические колебания (80). § 7. Волны в упругой среде. Акустика (96). Глава 2. Молекулярная физика и термодинамика § 8. Законы идеальных газов (109). § 9. Молекулярно-кинетическая теория газов (113). § 10. Элементы статистической физики (118). § 11. Физические основы термодинамики (131). § 12. Реальные газы. Жидкости (146). Глава 3. Электростатика § 13. Закон Кулона. Взаимодействие заряженных тел (160). § 14. Напряженность электрического поля. Электрическое смешение (167). § 15. Потенциал. Энергия системы электрическое смешение (167). § 15. Потенциал. Энергия системы электрическое смешение (167). § 15. Потенциал. Энергия системы электрическое у 18. Энергия заряженного проводника. Энергия электрического поля (213). Глава 4. Постоянный ток § 19. Основные законы постоянного тока (220). § 20. Ток в металлах, жидкостях и газах (230).	2	30,27
Подготовка к экзамену	1. Сивухин, Д.В. Общий курс физики. Том 3. Электричество. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2009. — 656 с. — Режим доступа: http://e.lanbook.com/book/2317 Глава III—X (с. 213–667) 2. Сивухин, Д.В. Общий курс физики. Том 4 Оптика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2002. — 792 с. — Режим доступа: http://e.lanbook.com/book/2314 Глава I—XI (с. 9–739) 3. Сивухин, Д.В. Общий курс физики Том 5 Атомная и ядерная физика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2002. — 784 с. — Режим доступа: http://e.lanbook.com/book/2315 Глава I—VII (с. 7–410) 4. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика. [Электронный ресурс] — Электрон. дан. — СПб.: Лань, 2017. — 500 с. — Режим доступа: http://e.lanbook.com/book/91065 Глава VI— XVIII. (с. 124–416). 5. Савельев, И.В. Курс общей физики. В 3-х тт. Т.З. Квантовая оптика. Атомная физика. Физика твердого тела. [Электронный	3	13,84

Физика для бакалавров: учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич – Челябинск: Издательский центр ЮУрГУ, 2013. – Ч. II. – 222 с. http://www.phys.susu.ru/lit/fizika2.pdf §1– §98 (с. 3–216)
--

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	2	Проме- жуточная аттестация	Экзамен (2 семестр)	-		Устный экзамен проводится по билетам в форме беседы. Теоретический вопросы. Ответ на теоретический вопрос должен удовлетворять следующим требованиям: • полно раскрыто содержание материала; • материал изложен грамотно, в определенной логической последовательности; • продемонстрировано системное и глубокое знание программного материала; • точно используется терминология; • показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации; • продемонстрировано усвоение ранее изученных сопутствующих вопросов, • сформированность и устойчивость компетенций, умений и навыков; • ответ прозвучал самостоятельно, без наводящих вопросов; • продемонстрирована способность творчески применять знание теории к решению профессиональных задач; • продемонстрировано знание современной учебной и научной литературы; Каждый ответ на теоретический вопрос оценивается от 0 до 10 баллов следующим образом:	экзамен

						1. Ответ на вопрос удовлетворяет	
						перечисленным требованиям с	
						незначительными замечаниями – 10	
						баллов	
						2. Ответ на вопрос содержит одно	
						существенное замечание (не	
						удовлетворяет одному из	
						требований) – 5 баллов	
						3. Ответ на вопрос содержит два и	
						более существенных замечаний (не	
						удовлетворяет двум из	
						перечисленных требований) или	
						ответа на вопрос нет – 0 баллов	
						Решение задачи. Каждая задача	
						оценивается от 0 до 10 баллов	
						следующим образом:	
						4–10 баллов – задача решена в целом	
						правильно, содержится не более двух	
						негрубых ошибок, не повлиявших на	
						общий ход решения задачи, верно	
						выбран метод решения задачи,	
						запись решения последовательная и	
						математически грамотная, физически	
						обоснованная, решение доведено до	
						ответа. От максимальной оценки	
						вычитаются: 2 балла, если нет	
						необходимого рисунка; 2 балла, если	
						нет необходимых пояснений; 2 балла	
						за каждую ошибку, не повлиявшую	
						существенно на ход решения; 2	
						балла, если ответ не получен.	
						0–4 балла – в процессе решения	
						задачи допущены существенные	
						ошибки, показавшие, что студент не	
						владеет обязательными знаниями и	
						умениями по данной теме. Неверно	
						выбран метод решения или изложено	
						менее 20 % полного решения. К	
						минимальной оценке 0 баллов	
						добавляется: 2 балла за необходимый	
						правильный рисунок; 2 балла за	
						правильный закон, с помощью	
						которого можно решить задачу.	
						Дополнительные вопросы по	
						дополнительные вопросы по материалу курса. Каждый ответ	
						оценивается от 0 до 5 баллов	
						следующим образом: 3–5 баллов за	
						-	
						правильный ответ (могут быть	
						незначительные замечания); 0–2 если	
						ответ на вопрос содержит одно	
						существенное замечание; 0 – ответа	
						на вопрос нет или ответ содержит	
						более двух существенных замечаний.	
			_			Баллы начисляются за личное	
2	2	Бонус	Бонус	-	15	1 1	экзамен
						диплом конференции или конкурса	

						по дисциплине «физика» (международный уровень - 15 баллов, для российского уровня - 10 баллов, для уровня университета - 5 баллов), участие в олимпиадах, конкурсах, научно-практических конференциях, публикации по тематике дисциплины (1 балл за каждое мероприятие).	
3	2	Текущий контроль	Решение задач: кинематика материальной точки	0,3	3	Предлагается для решения 3 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
4	2	Текущий контроль	Решение задач: динамика материальной точки	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
5	2	Текущий контроль	Решение задач: закон сохранения импульса	1	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
6	2	Текущий контроль	Решение задач: закон сохранения энергии	1	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
7	2	Текущий контроль	Решение задач: динамика вращательного движения АТТ	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
8	2	Текущий контроль	Решение задач: закон сохранения момента импульса	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
9	2	Текущий контроль	Решение задач: механические колебания и волны	1	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
10	2	Текущий контроль	Решение задач: молекулярная физика и термодинамика	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
11	2	Текущий контроль	Лабораторные работы: механика, молекулярная физика и термодинамика	1	8	Предлагается для выполнения 8 лабораторных работ. Факт выполнения работы подтверждается подписью преподавателя рядом с таблицей экспериментальных данных. Оценивается каждый отчет по лабораторной работе: 1 балл — работа выполнена, отчет оформлен без замечаний (или с незначительными замечаниями) — содержит правильные результаты обработки экспериментальных данных и вывод. 1/2 балла — работа выполнена, отчет содержит одно существенное замечание (ошибка в расчетах, неполное соответствие требованиям оформления, некорректный вывод и т.п.). 1/3 балла — работа выполнена, отчет	экзамен

						содержит два существенных замечания. 0 баллов – отчет содержит более двух существенных замечаний или	
12	2	Текущий контроль	Контрольная работа (семестр 2)	0,4	40	работа не выполнена. Предлагается 4 задачи. Каждая задача оценивается от 0 до 10 баллов следующим образом: 4—10 баллов — задача решена в целом правильно, содержится не более двух негрубых ошибок, не повлиявших на общий ход решения задачи, верно выбран метод решения задачи, запись решения последовательная и математически грамотная, физически обоснованная, решение доведено до ответа. От максимальной оценки вычитаются: 2 балла, если нет необходимого рисунка; 2 балла, если нет необходимых пояснений; 2 балла за каждую ошибку, не повлиявшую существенно на ход решения; 2 балла, если ответ не получен. 0—4 балла — в процессе решения задачи допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме. Неверно выбран метод решения или изложено менее 20 % полного решения. К минимальной оценке 0 баллов добавляется: 2 балла за необходимый правильный рисунок; 2 балла за правильный закон, с помощью которого можно решить задачу.	экзамен
13	3	Проме- жуточная аттестация	Экзамен (3 семестр)		40	Устный экзамен проводится по билетам в форме беседы. Теоретический вопросы. Ответ на теоретический вопрос должен удовлетворять следующим требованиям: • полно раскрыто содержание материала; • материал изложен грамотно, в определенной логической последовательности; • продемонстрировано системное и глубокое знание программного материала; • точно используется терминология; • показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации; • продемонстрировано усвоение ранее изученных сопутствующих	экзамен

вопросов, • сформированность и устойчивость компетенций, умений и навыков; • ответ прозвучал самостоятельно, без наводящих вопросов; • продемонстрирована способность творчески применять знание теории к решению профессиональных задач; • продемонстрировано знание современной учебной и научной литературы; Каждый ответ на теоретический вопрос оценивается от 0 до 10 баллов следующим образом: 1. Ответ на вопрос удовлетворяет перечисленным требованиям с незначительными замечаниями – 10 баллов 2. Ответ на вопрос содержит одно существенное замечание (не удовлетворяет одному из требований) – 5 баллов 3. Ответ на вопрос содержит два и более существенных замечаний (не удовлетворяет двум из перечисленных требований) или ответа на вопрос нет – 0 баллов Решение задачи. Каждая задача оценивается от 0 до 10 баллов следующим образом: 4–10 баллов – задача решена в целом правильно, содержится не более двух негрубых ошибок, не повлиявших на общий ход решения задачи, верно выбран метод решения задачи, запись решения последовательная и математически грамотная, физически обоснованная, решение доведено до ответа. От максимальной оценки вычитаются: 2 балла, если нет необходимого рисунка; 2 балла, если нет необходимых пояснений; 2 балла за каждую ошибку, не повлиявшую существенно на ход решения; 2 балла, если ответ не получен. 0–4 балла – в процессе решения задачи допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме. Неверно выбран метод решения или изложено менее 20 % полного решения. К минимальной оценке 0 баллов добавляется: 2 балла за необходимый правильный рисунок; 2 балла за правильный закон, с помощью

			T		1	T	1
						которого можно решить задачу. Дополнительные вопросы по материалу курса. Каждый ответ оценивается от 0 до 5 баллов следующим образом: 3–5 баллов за правильный ответ (могут быть незначительные замечания); 0–2 если ответ на вопрос содержит одно существенное замечание; 0 – ответа на вопрос нет или ответ содержит более двух существенных замечаний. Баллы начисляются за личное призовое место на олимпиаде, диплом конференции или конкурса по дисциплине «физика» (международный уровень - 15 баллов, для российского уровня - 10	
14	3	Бонус	Бонус	-	15	баллов, для россииского уровня - 10 баллов, для уровня университета - 5 баллов), участие в олимпиадах, конкурсах, научно-практических конференциях, публикации по тематике дисциплины (1 балл за каждое мероприятие).	экзамен
15	3	Текущий контроль	Решение задач: электростатическое поле (напряженность, т. Гаусса-Остроградского)	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
16	3	Текущий контроль	Решение задач: электростатическое поле (потенциал)	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
17	3	Текущий контроль	Решение задач: электрическая емкость, постоянный ток	1	5	Предлагается для решения 5 задач. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
18	3	Текущий контроль	Решение задач: закон Био-Савара- Лапласа	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
19	3	Текущий контроль	Решение задач: сила Лоренца и сила Ампера	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
20	3	Текущий контроль	Решение задач: закон электромагнитной индукции	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
21	3	Текущий контроль	Решение задач: электромагнитные колебания	1	0,3	Предлагается для решения 3 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
22	3	Текущий контроль	Решение задач: геометрическая оптика	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
23	3	Текущий контроль	Решение задач: интерференция света	0,3	3	Предлагается для решения 3 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен

24	3	Текущий контроль	Решение задач: дифракция	0,3	4	Предлагается для решения 4 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
25	3	Текущий контроль	Решение задач: поляризация	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
26	3	Текущий контроль	Решение задач: тепловое излучение	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
27	3	Текущий контроль	Решение задач: фотоэффект	0,3	2	Предлагается для решения 2 задачи. Каждая правильно решенная задача оценивается в 1 балл.	экзамен
28	3	Текущий контроль	Решение задач: давление света	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
29	3	Текущий контроль	Решение задач: эффект Комптона	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
30	3	Текущий контроль	Решение задач: атомная физика	0,3	1	Предлагается для решения 1 задача. Правильно решенная задача оценивается в 1 балл.	экзамен
31	3	Текущий контроль	Лабораторные работы: Электричество	0,3	8	Предлагается для выполнения 8 лабораторных работ. Факт выполнения работы подтверждается подписью преподавателя рядом с таблицей экспериментальных данных. Оценивается каждый отчет по лабораторной работе: 1 балл — работа выполнена, отчет оформлен без замечаний (или с незначительными замечаниями) — содержит правильные результаты обработки экспериментальных данных и вывод. 1/2 балла — работа выполнена, отчет содержит одно существенное замечание (ошибка в расчетах, неполное соответствие требованиям оформления, некорректный вывод и т.п.). 1/3 балла — работа выполнена, отчет содержит два существенных замечания. 0 баллов — отчет содержит более двух существенных замечаний или работа не выполнена.	экзамен
32	3	Текущий контроль	Лабораторные работы: Оптика	0,3	8	Предлагается для выполнения 8 лабораторных работ. Факт выполнения работы подтверждается подписью преподавателя рядом с таблицей экспериментальных данных. Оценивается каждый отчет по лабораторной работе: 1 балл — работа выполнена, отчет оформлен без замечаний (или с	экзамен

			T			Т	
						незначительными замечаниями) –	
						содержит правильные результаты	
						обработки экспериментальных	
						данных и вывод.	
						1/2 балла – работа выполнена, отчет	
						содержит одно существенное	
						замечание (ошибка в расчетах,	
						неполное соответствие требованиям	
						оформления, некорректный вывод и	
						т.п.).	
						1/3 балла – работа выполнена, отчет	
						содержит два существенных	
						замечания.	
						0 баллов – отчет содержит более	
						двух существенных замечаний или	
						работа не выполнена.	
						Предлагается 4 задачи. Каждая	
						задача оценивается от 0 до 10 баллов	
						следующим образом:	
						4–10 баллов – задача решена в целом	
						правильно, содержится не более двух	
						негрубых ошибок, не повлиявших на	
						общий ход решения задачи, верно	
						выбран метод решения задачи,	
						запись решения последовательная и	
						математически грамотная, физически	
						обоснованная, решение доведено до	
						ответа. От максимальной оценки	
						вычитаются: 2 балла, если нет	
						необходимого рисунка; 2 балла, если	
		Текущий	Контроні над работа			нет необходимых пояснений; 2 балла	
33	3	тскущии	Контрольная работа	0,4	40	за каждую ошибку, не повлиявшую	экзамен
		контроль	(3-й семестр)			1	
						существенно на ход решения; 2	
						балла, если ответ не получен.	
						0–4 балла – в процессе решения	
						задачи допущены существенные	
						ошибки, показавшие, что студент не	
						владеет обязательными знаниями и	
						умениями по данной теме. Неверно	
						выбран метод решения или изложено	
						менее 20 % полного решения. К	
						минимальной оценке 0 баллов	
						добавляется: 2 балла за необходимый	
						правильный рисунок; 2 балла за	
						правильный закон, с помощью	
						которого можно решить задачу.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	Устный экзамен проводится по билетам в форме беседы.	В соответствии с пп. 2.5, 2.6 Положения
экзамен	Устный экзамен проводится по билетам в форме беседы.	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Y.C.																			J	<u>Vo</u>	ΚN	Л									
Компетенции	Результаты обучения	1	2	3	45	6	7	8	9	10	11	1	2	13	14	1.5	5 16	51			_		21	22	23	24	25	26	27	28	29
ОПК-1	Знает: основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных	+	+					1	1	+	+	-1		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
ОПК-1	задач Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой техники и новых технологий	+	+	+-	+	+	-+	1+	1	+	+	+		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+ ·
ОПК-1	Имеет практический опыт: решения физических задач, теоретического и экспериментального исследования	+	+	+-	+	++		+	+	+	+	+		+	+	+	+	+	- -	+	+	+	+	+	+	+	+	+	+	+	+
ОПК-11	Знает: основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях; назначение и принципы действия важнейших физических приборов Умеет: записывать	+	1								+	+			+																

	уравнения для		Ī			$\lceil \rceil$	1	T	T	Ī						_		_	_ [_		
	физических величин в																	,				
	системе СИ; работать с																					ľ
	приборами и																					ľ
	оборудованием																					ľ
	современной																	,				ľ
	физической																	,				ľ
	лаборатории;																					
	использовать														Ī	Ī						
	различные методики																					ľ
	измерений и обработки																.					ľ
	экспериментальных																.					ľ
	данных; использовать														Ī	Ī						
	методы адекватного																					ľ
	физического и																					
	математического																					
	моделирования, а																					
	также применять																					ľ
	методы																					
	физикоматематического																.					
	анализа к решению																					
	конкретных																.					
	естественнонаучных и																	,				
	технических проблем																					
	Имеет практический	Π	T	П	T	П	T		T	T										T	T	
	опыт: применения														Ī	Ī						
	методов обработки и																					
OFFIC 11	интерпретации								1,].	<u> </u>					.					
ОПК-11	результатов измерений,	+ +	+						+	+	+	+										
	навыков обработки																					
	экспериментальных																	,				
	ланных	H						ĺ												1		

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Савельев, И. В. Курс общей физики [Текст] Т. 2 Электричество и магнетизм. Волны. Оптика Учеб. пособ. для втузов : В 3 т. И. В. Савельев. 2-е изд., перераб. М.: Наука, 1982. 496 с. ил.
- 2. Иродов, И. Е. Задачи по общей физике [Текст] учеб. пособие для вузов И. Е. Иродов. 13-е изд., стер. СПб. и др.: Лань, 2009. 416 с. ил.
- 3. Гуревич, С. Ю. Механика. Молекулярная физика. Термодинамика [Текст] учеб. пособие по выполнению лаб. работ С. Ю. Гуревич, Е. В. Голубев, Е. Л. Шахин; Юж.-Урал. гос. ун-т, Каф. Физ. электроника; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2017. 109, [1] с. ил. электрон. версия
- 4. Шульгинов, А. А. Электричество и магнетизм Текст учеб. пособие для выполнения лаб. работ А. А. Шульгинов, Ю. В. Петров, Д. Г. Кожевников; под ред. А. А. Шульгинова; Юж.-Урал. гос. ун-т, Каф. Общ. и эксперимент.

- физика ; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2011. 131, [1] с. ил. электрон. версия
- 5. Чертов, А. Г. Задачник по физике [Текст] учеб. пособие для втузов А. Г. Чертов, А. А. Воробьев. 8-е изд., перераб. и доп. М.: Физматлит, 2005. 640 с.

б) дополнительная литература:

- 1. Гуревич, С. Ю. Физика для бакалавров Текст Ч. 2 учеб. пособие для самостоят. работы студентов С. Ю. Гуревич; Юж.-Урал. гос. ун-т, Каф. Общ. и эксперимент. физика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2013. 220, [1] с. ил.
- 2. Сивухин, Д. В. Общий курс физики Т. 2 Термодинамика и молекулярнаяя физика Учеб. пособие для физ. спец. вузов: В 5 т. 3-е изд., испр. и доп. М.: Наука, 1990. 591 с. ил.
- 3. Матвеев, А. Н. Механика и теория относительности [Текст] учебник для вузов А. Н. Матвеев. 3-е изд. М.: Оникс 21 век : Мир и образование, 2003. 431 с. ил.
- 4. Матвеев, А. Н. Электричество и магнетизм Учеб. пособие для физ. спец. вузов. М.: Высшая школа, 1983. 463 с. ил.
- 5. Сивухин, Д. В. Общий курс физики [Текст] Т. 4 Оптика для физ. спец. вузов Д. В. Сивухин. 2-е изд., испр. М.: Наука, 1985. 751 с. ил.
- 6. Сивухин, Д. В. Общий курс физики Т. 1 Механика Учеб. пособие для физ. специальностей вузов Д. В. Сивухин. 5-е изд., стер. М.: Физматлит, 2006. 560 с. ил.
- 7. Сивухин, Д. В. Общий курс физики [Текст] Т. 3 Электричество учеб. пособие для вузов Д. В. Сивухин. 2-е изд., испр. М.: Наука, 1983. 688 с. ил.
- 8. Матвеев, А. Н. Молекулярная физика [Текст] учеб. для физ. спец. вузов А. Н. Матвеев. 2-е изд., перераб. и доп. М.: Высшая школа, 1987. 360 с. ил.
- 9. Ландсберг, Г. С. Оптика [Текст] учеб. пособие для физ. специальностей вузов Г. С. Ландсберг. 5-е изд., перераб. и доп. М.: Наука, 1976. 926 с. ил.
- 10. Сивухин, Д. В. Общий курс физики [Текст] Т. 5 Атомная и ядерная физика, Ч. 2 : Ядерная физика учеб. пособие для физ. спец. вузов в 5 т. Д. В. Сивухин. 2-е изд., испр. М.: Наука, 1989. 415 с. ил.
- 11. Сборник задач по общему курсу физики [Текст] Т. 2 Термодинамика и молекулярная физика в 5 т. В. Л. Гинзбург, Л. М. Левин, Д. В. Сивухин, И. А. Яковлев; Под ред. Д. В. Сивухина. 5-е изд., стер. М.: Физматлит: Лань, 2006. 176 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Вестник Южно-Уральского государственного университета. Серия "Математика. Механика. Физика"
 - 2. Физика. 18. реферативный журнал
 - 3. Успехи физических наук, науч. журн.
- г) методические указания для студентов по освоению дисциплины:

- 1. Шульгинов А.А., Петров Ю.В., Кожевников Д.Г. Электричество и магнетизм: учебное пособие для выполнения лабораторных работ. Челябинск: Издательский центр ЮУрГУ, 2011. 132 с. http://phys.susu.ru/lit/EM2011.pdf http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000461794
- 2. Голубев Е.В., Шахин Е.Л. Механика. Основы молекулярной физики: задания для программированного контроля знаний на лабораторных занятиях. Челябинск: Издательский центр ЮУрГУ, 2015. 63 с.
- 3. Гуревич, С. Ю. Физика: Учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич, Е. Л. Шахин 3-е изд., испр. и дополн. Челябинск: Изд-во ЮУрГУ, 2002, ч.1 125 с. http://www.phys.susu.ru/lit/fizika1.pdf http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000236374
- 4. Гуревич С.Ю., Голубев Е.В., Шахин Е.Л. Механика. Молекулярная физика. Термодинамика [Текст] : учеб. пособие для 1 курса по выполнению лаб. работ. Челябинск : Издательский Центр ЮУрГУ, 2013. 103 с. http://phys.susu.ru/lit/mec2013.pdf
- 5. Шульгинов А.А., Мишина Л.А., Петров Ю.В. Электричество и магнетизм: тесты к лабораторному практикуму. Челябинск: Издательский центр ЮУрГУ, 2010. 53 с.
- http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000428047
- 6. Гуревич, С. Ю. Физика: Учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич, Е. Л. Шахин 3-е изд., испр. и дополн. Челябинск: Изд-во ЮУрГУ, 2002, ч.ІІ 192 с. http://www.phys.susu.ru/lit/fizika2.pdf
- 7. Андрианов Б.А., Подзерко В.Ф., Соболевский А.С. Оптика и ядерная физика: учебное пособие для выполнения лабораторных работ. Челябинск: Издательский центрЮУрГУ, 2013. 82 с. http://phys.susu.ru/lit/op2013.pdf http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000520021

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Шульгинов А.А., Петров Ю.В., Кожевников Д.Г. Электричество и магнетизм: учебное пособие для выполнения лабораторных работ. Челябинск: Издательский центр ЮУрГУ, 2011. 132 с. http://phys.susu.ru/lit/EM2011.pdf http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000461794
- 2. Голубев Е.В., Шахин Е.Л. Механика. Основы молекулярной физики: задания для программированного контроля знаний на лабораторных
- занятиях. Челябинск: Издательский центр ЮУрГУ, 2015. 63 с.
- 3. Гуревич, С. Ю. Физика: Учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич, Е. Л. Шахин 3-е изд., испр. и дополн. Челябинск: Изд-во ЮУрГУ, 2002, ч.1 125 с. http://www.phys.susu.ru/lit/fizika1.pdf
- http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000236374
- 4. Гуревич С.Ю., Голубев Е.В., Шахин Е.Л. Механика. Молекулярная физика. Термодинамика [Текст] : учеб. пособие для 1 курса по выполнению

- лаб. работ. Челябинск : Издательский Центр ЮУрГУ, 2013.-103 с. http://phys.susu.ru/lit/mec2013.pdf
- 5. Шульгинов А.А., Мишина Л.А., Петров Ю.В. Электричество и магнетизм: тесты к лабораторному практикуму. Челябинск: Издательский центр ЮУрГУ, 2010. 53 с.

http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000428047

- 6. Гуревич, С. Ю. Физика: Учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич, Е. Л. Шахин 3-е изд., испр. и дополн. Челябинск: Изд-во ЮУрГУ, 2002, ч.II 192 с. http://www.phys.susu.ru/lit/fizika2.pdf
- 7. Андрианов Б.А., Подзерко В.Ф., Соболевский А.С. Оптика и ядерная физика: учебное пособие для выполнения лабораторных работ. Челябинск: Издательский центрЮУрГУ, 2013. 82 с. http://phys.susu.ru/lit/op2013.pdf

http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000520021

Электронная учебно-методическая документация

№	Вил	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства Лань	Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2016. — 436 с. — Режим доступа: http://e.lanbook.com/book/71760 — Загл. с экрана.
2	Основная литература	система	Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2017. — 500 с. — Режим доступа: http://e.lanbook.com/book/91065 — Загл. с экрана.
3	Основная литература	Электронно- библиотечная система издательства Лань	Савельев, И.В. Курс общей физики. В 3-х тт. Т.3. Квантовая оптика. Атомная физика. Физика твердого тела. [Электронный ресурс] — Электрон. дан. — СПб. : Лань, 2011. — 320 с. — Режим доступа: http://e.lanbook.com/book/2040 — Загл. с экрана.
4	Дополнительная литература	Электронно- библиотечная система издательства Лань	Сивухин, Д.В. Общий курс физики. Том 1 Механика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2010. — 560 с. — Режим доступа: http://e.lanbook.com/book/2313 — Загл. с экрана.
5	Дополнительная литература	система	Сивухин, Д.В. Общий курс физики Том 2 Термодинамика и молекулярная физика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2006. — 544 с. — Режим доступа: http://e.lanbook.com/book/2316 — Загл. с экрана.
6	Дополнительная литература	Электронно- библиотечная система издательства Лань	Сивухин, Д.В. Общий курс физики. Том 3. Электричество. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2009. — 656 с. — Режим доступа: http://e.lanbook.com/book/2317 — Загл. с экрана.

_		1	
1/	Дополнительная литература	Электронно- библиотечная система издательства Лань	Сивухин, Д.В. Общий курс физики. Том 4 Оптика. [Электронный ресурс] — Электрон. дан. — М. : Физматлит, 2002. — 792 с. — Режим доступа: http://e.lanbook.com/book/2314 — Загл. с экрана.
IA.	Дополнительная литература	изнотонь отро	Сивухин, Д.В. Общий курс физики Том 5 Атомная и ядерная физика. [Электронный ресурс] — Электрон. дан. — М.: Физматлит, 2002. — 784 с. — Режим доступа: http://e.lanbook.com/book/2315 — Загл. с экрана.
19	Основная литература	Электронно- библиотечная система издательства Лань	Иродов, И.Е. Задачи по общей физике. [Электронный ресурс] — Электрон. дан. — М.: Издательство "Лаборатория знаний", 2014. — 431 с. — Режим доступа: http://e.lanbook.com/book/66335 — Загл. с экрана.
10	посооия для самостоятельной	Электронный каталог ЮУрГУ	Гуревич, С. Ю. Физика: Учебное пособие для самостоятельной работы студентов / С.Ю. Гуревич, Е. Л. Шахин – 3-е изд., испр. и дополн. – Челябинск: Изд-во ЮУрГУ, 2002, ч.1 – 125 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000236374
11	ΛΟΜΟΛΤΟΠΤΩΠΙ ΠΟΙΙ	Электронный каталог ЮУрГУ	Шульгинов А.А., Петров Ю.В., Кожевников Д.Г. Электричество и магнетизм: учебное пособие для выполнения лабораторных работ. – Челябинск: Издательский центр ЮУрГУ, 2011. – 132 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000461794
12	СОМОСТОЯТЕНИ ПОЙ	Электронный каталог ЮУрГУ	Андрианов Б.А., Подзерко В.Ф., Соболевский А.С. Оптика и ядерная физика: учебное пособие для выполнения лабораторных работ. — Челябинск: Издательский центрЮУрГУ, 2013. — 82 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000520021
13	Самостоятельной	Электронный каталог ЮУрГУ	Шульгинов А.А., Мишина Л.А., Петров Ю.В. Электричество и магнетизм: тесты к лабораторному практикуму. – Челябинск: Издательский центр ЮУрГУ, 2010. – 53 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000428047

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия	348 (3)	Лабораторный практикум "Оптика и ядерная физика"
Лекции	204 (3г)	Комплект электронных слайдов по разделам 1-8
Лабораторные занятия	339 (3)	Лабораторный практикум "Электричество и магнетизм"
Лекции		Демонстрационные установки: 1. кресло Жуковского; 2. продольные и поперечные волны; 3. биения; 4. распределение заряда по поверхности

	проводника; 5. электрическое поле конденсатора; 6. электрический ветер; 6. сила Ампера; 7. индукционный ток; 8. «послушная» катушка; 9. экстраток при замыкании и размыкании цепи; 10. свойства электромагнитных волн; 11. опыты Столетова.
LOTATITIE	Видеофильмы: 1. Явление инерции; 2. Инертность тел; 3. Реактивное движение; 4. Архимедова сила; 5. Закон Архимеда; 6. Двигатель внутреннего сгорания; 7. Относительность движения; 8. Фонтан в пустоте; 9. Слипание твёрдых тел; 10. Кипение при пониженном давлении; 11. Поплавок Декарта; 12. Тепловое расширение тел; 13. Воздушное отниво; 14. Атмосферное давление; 15. Магдебургские полушария; 16. Условия плавания тел; 17. Опыт Штерна; 18. Свободные и затухающие колебания; 19. Механические вынужденные колебания; 20. Резонанс; 21. Поле одноимённых зарядов; 22. Поле разноимённых зарядов; 23. Поле точечного заряда; 24. Взаимодействие диэлектрика с заряженной палочкой; 25. Взаимодействие проводника с заряженной палочкой; 25. Взаимодействие проводника с заряженной палочкой; 26. Диэлектрики в электрическом поле; 27. Проводники в электрическом поле; 28. Разряд конденсатора большой ёмкости; 29. Распределение заряда по поверхности проводника; 30. Электрический ветер; 31. Ферромагнетики в магнитном поле; 32. Диа- и парамагнетики в магнитном поле; 33. Правило Ленца; 34. Ёмкость в цепи переменного тока; 35. Индуктивность в цепи переменного тока; 36. Индукционный ток в кольце; 37. Индукционный ток; 38. Применение индукционного тока; 39. Применение токов Фуко; 40. Резонанс в цепи переменного тока; 41. Самоиндукция; 42. Спидометр; 43. Электромагнитная индукция; 44. Электросварка; 45. Электромагнитные колебания; 46. Интерференция; 47. Интерференция в тонких плёнках; 48. Электромагнитные волны в двухпроводной линии; 49. Стоячие электромагнитные волны; 50. Колебания в природе и технике; 51. Дифракция; 52. Глаз; 53. Диафрагма; 54. Закон отражения света; 55. Закон преломления света; 56. Красная граница фотоэффекта; 57. Полное внутреннее отражение; 58. Полное отражение в трёхгранной призме; 59. Распределение энергии в спектре лампы накаливания; 60. Тень и полутень; 61. Фокальная плоскость; 62. Фокус и фокусное расстояние; 63. Фотоэффект; 64. Явление обратимости светового луча.
	Лабораторный практикум "Механика и термодинамика"