ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОУБГУ Ожно-Уральского гокуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Самодурова М. Н. Пользователь: smodouro sam Дата подписания: 0 40 7/2024

М. Н. Самодурова

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.06.02 Математическое моделирование индивидуальных каналов средств измерений для направления 12.04.01 Приборостроение уровень Магистратура магистерская программа Информационно-измерительные системы форма обучения очная кафедра-разработчик Информационно-измерительная техника

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 12.04.01 Приборостроение, утверждённым приказом Минобрнауки от 22.09.2017 № 957

Зав.кафедрой разработчика, д.техн.н., доц.

Разработчик программы, доцент

М. Н. Самодурова

Эвектронный документ, подписанный ПЭП, хранится в системе электронного документооброга (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Оказователь: konstantinovi (Дата подписанке 63 67 2024

В. И. Константинов

1. Цели и задачи дисциплины

Глобальной целью изучения дисциплины «Математическое моделирование каналов средств измерений» является теоретическая и практическая подготовка студентов в области разработки средств измерений в виде формирования у них знаний и умений построения математических моделей функциональных узлов измерительных средств, а также планирования и проведения экспериментов с математическими моделями. Основная задача дисциплины — формирование знаний о принципах математического моделирования каналов средств измерений, умения формировать математическую модель и проводить эксперименты с ней..

Краткое содержание дисциплины

Основными разделами курса являются: Моделирование входных аналоговых преобразователей, моделирование инструментальных усилителей, моделирование измерительных преобразователей для резистивных датчиков, моделирование измерительных преобразователей для емкостных датчиков, моделирование нелинейных измерительных преобразователей, моделирование аналоговых интерфейсов.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-1 Способен осуществлять организацию и управление проведением научно- исследовательских и опытно-конструкторских работ, определенных созданием конкурентоспособной наукоемкой продукции	Знает: принципы проектирования и конструирования узлов, блоков, приборов и систем с использованием средств компьютерного проектирования, проведения проектных расчетов и технико-экономическим обоснованием Умеет: выполнять проектирование и конструирование узлов, блоков, приборов и систем с использованием средств компьютерного проектирования, проектные расчеты и технико-экономическое обоснование Имеет практический опыт: проектирования и конструирования узлов, блоков, приборов и систем с использованием средств компьютерного проектирования, проведения проектных расчетов и технико-экономического обоснования

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Распределенные интеллектуальные	
автоматизированные системы управления	
технологическими процессами,	Производственная практика (производственно-
TA DARTIBULIE ADEKTROUULIE II MIKKRODROHECCORULIE	технологическая) (4 семестр)
системы,	(4 cemeerp)
Цифровая обработка сигналов,	
Беспроводные технологии передачи	

измерительной информации и данных

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 56,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	51,5	51,5
Моделирование инструментальных усилителей	10	10
Моделирование аналоговых интерфейсов	10	10
Моделирование входных аналоговых преобразователей	10	10
Подготовка к экзамену	21,5	21.5
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах					
раздела	•	Всего	Л	П3	ЛР		
1	Моделирование входных аналоговых преобразователей	12	4	8	0		
2	Моделирование инструментальных усилителей	4	2	2	0		
)	Моделирование измерительных преобразователей для резистивных датчиков	6	2	4	0		
4	Моделирование измерительных преобразователей для емкостных датчиков	6	2	4	0		
` `	Моделирование нелинейных измерительных преобразователей	14	4	10	0		
6	Моделирование аналоговых интерфейсов	6	2	4	0		

5.1. Лекции

$N_{\underline{0}}$

лекции	раздела		часов
1	1	Аналоговые ключи. Ограничители уровня аналоговых сигналов	2
2	1	Амплитудные детекторы. Устройства выборки-хранения.	2
3	2	Моделирование инструментальных усилителей	2
4	3	Моделирование измерительных преобразователей для резистивных датчиков	2
5	4	Моделирование измерительных преобразователей для емкостных датчиков	2
6	5	Логарифматоры и антилогарифматоры	2
7	5	Интегральные перемножители	2
8	6	Выходные токовые интерфейсы (0-5; 0-10; 4-20 мА)	2

5.2. Практические занятия, семинары

<u>№</u> занятия	<u>№</u> раздела	Наименование или краткое содержание практического занятия, семинара	Кол-во часов
1	1	Аналоговые ключи. Ограничители уровня аналоговых сигналов	4
2	1	Амплитудные детекторы. Устройства выборки-хранения.	4
3	2	Моделирование инструментальных усилителей	2
4	3	Моделирование измерительных преобразователей для резистивных датчиков	4
5	4	Моделирование измерительных преобразователей для емкостных датчиков	4
6	5	Логарифматоры и антилогарифматоры	4
7	5	Интегральные перемножители	6
8	6	Выходные токовые интерфейсы (0-5; 0-10; 4-20 мА)	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

В	Выполнение СРС							
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов					
Моделирование инструментальных усилителей	Конспект	3	10					
Моделирование аналоговых интерфейсов	Конспект	3	10					
Моделирование входных аналоговых преобразователей	Конспект	3	10					
Подготовка к экзамену	Электронный конспект	3	21,5					

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
0	3	Текущий контроль	Интегральные перемножители	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Общий балл при оценке складывается из следующих показателей (за каждую лабораторную работу): - приведены результаты исследования или моделирования — 1 балл - выводы логичны и обоснованы — 1 балл - оформление работы соответствует требованиям — 1 балл - правильный ответ на один вопрос — 1 балл Максимальное количество баллов — 5.	экзамен
1	3	Текущий контроль	Моделирование узлов измерительных устройств	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Общий балл при оценке складывается из следующих показателей (за каждую лабораторную работу): - приведены результаты исследования или моделирования — 1 балл - выводы логичны и обоснованы — 1 балл - оформление работы соответствует требованиям — 1 балл - правильный ответ на один вопрос — 1 балл Максимальное количество баллов — 5.	экзамен
2	3	Текущий контроль	Амплитудные детекторы.	1	5	Защита лабораторно-практической работы осуществляется	экзамен

			Устройства			индивидуально. Студентом	
			Устройства выборки-хранения.			индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Общий балл при оценке складывается из следующих показателей (за каждую лабораторную работу): - приведены результаты исследования или моделирования — 1 балл - выводы логичны и обоснованы — 1 балл -	
						оформление работы соответствует требованиям – 1 балл - правильный ответ на один вопрос – 1 балл Максимальное количество баллов – 5.	
3	3	Текущий контроль	Моделирование инструментальных усилителей	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся	экзамен
4	3	Текущий контроль	Моделирование измерительных преобразователей для резистивных и емкостных датчиков	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании	экзамен

						результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Общий балл при оценке складывается из следующих показателей (за каждую лабораторную работу): - приведены результаты исследования или моделирования — 1 балл - выводы логичны и обоснованы — 1 балл - оформление работы соответствует требованиям — 1 балл - правильный ответ на один вопрос — 1 балл Максимальное количество баллов — 5.	
5	3	Текущий контроль	Логарифматоры и антилогарифматоры	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся	экзамен
7	3	Текущий контроль	Моделирование аналоговых интерфейсов	1	5	Защита лабораторно-практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179) Общий балл при	экзамен

		1				T	, ,
						оценке складывается из следующих	
						показателей (за каждую	
						лабораторную работу): - приведены	
						результаты исследования или	
						моделирования – 1 балл - выводы	
						логичны и обоснованы – 1 балл -	
						оформление работы соответствует	
						требованиям – 1 балл - правильный	
						ответ на один вопрос – 1 балл	
						Максимальное количество баллов –	
						5.	
						На экзамене происходит оценивание	
						учебной деятельности обучающихся	
						по дисциплине на основе	
						полученных оценок за контрольно-	
						рейтинговые мероприятия текущего	
						контроля и промежуточной	
						аттестации. При оценивании	
						результатов учебной деятельно-сти	
						обучающегося по дисциплине	
						используется балльно-рейтинговая	
						система оценивания результатов	
		Проме-				учебной деятельности обучающихся	
8	3	жуточная	Экзамен	_	60	(ут-верждена приказом ректора от	экзамен
		аттестация				24.05.2019 г. № 179) Отлично:	
		,				Величина рейтинга обучающегося	
						по дисциплине 85100 %	
						Хорошо: Величина рейтинга	
						обучающегося по дисциплине	
						7584 %	
						Удовлетворительно: Величина	
						рейтинга обучающегося по	
						дисциплине 6074 %	
						Неудовлетворительно: Величина	
						рейтинга обучающегося по	
						дисциплине 059 %	
				I	<u> </u>	дпоциплино 0эл /0	

6.2. Процедура проведения, критерии оценивания

Не предусмотрены

6.3. Паспорт фонда оценочных средств

Компетенции	Decrease of wearing			N	Vo KM			
	Результаты обучения	0 1	2	3	4 5	7	8	
11 115 - 1	Знает: принципы проектирования и конструирования узлов, блоков, приборов и систем с использованием средств компьютерного проектирования, проведения проектных расчетов и технико-экономическим обоснованием	+	+		-	+	- -	+
IIIK-I	Умеет: выполнять проектирование и конструирование узлов, блоков, приборов и систем с использованием средств компьютерного проектирования, проектные расчеты и технико-экономическое обоснование	+		+	-	+	+	+
ПК-1	Имеет практический опыт: проектирования и конструирования узлов, блоков, приборов и систем с использованием средств компьютерного	+			+-	++	+	+

проектирования, проведения проектных расчетов и технико-			
экономического обоснования			

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Гутников, В. С. Интегральная электроника в измерительных устройствах. 2-е изд., перераб. и доп. Л.: Энергоатомиздат. Ленинградское отделение, 1988. 303 с. ил.
 - 2. Пейтон, А. Дж. Аналоговая электроника на операционных усилителях Практ. руководство Пер. с англ. В. Л. Григорьева; Ред. пер. А. П. Молодяну. М.: Бином, 1994. 349,[1] с. ил.
- б) дополнительная литература:
 - 1. Введение в математическое моделирование Учеб. пособие В. Н. Ашихмин, М. Б. Гитман, И. Э. Келлер и др.; Под ред. П. В. Трусова. М.: Логос, 2004. 439 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания по освоению дисциплины "Полупроводниковые приборы и устройства"

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания по освоению дисциплины "Полупроводниковые приборы и устройства"

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. Linear Technology-LTspice IV(бессрочно)
- 3. -Multisim(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

	ауд.	предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	534 (3б)	Аудиовизуальный комплекс для лекций
Лабораторные занятия		Специализированные стенды для проведения лабораторных работ паспорт лаб 716. 2021