## ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе засктронного документооборога ПОУРГУ Ожно-Уранаского государственного университета СВЕДНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Таранского П. Таранс

П. А. Тараненко

#### РАБОЧАЯ ПРОГРАММА

**дисциплины** 1.Ф.М0.07 Предельные неупругие состояния конструкций **для направления** 15.04.03 Прикладная механика **уровень** Магистратура

**магистерская программа** Компьютерное моделирование высокотехнологичных конструкций

форма обучения очная

кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.04.03 Прикладная механика, утверждённым приказом Минобрнауки от 09.08.2021 № 731

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, д.техн.н., проф., профессор

П. А. Тараненко

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота ПОХБГУ Ожлю-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Чернявский А. О. Пользователь: chemiavskiiao дата подписанна: 16.05.2025

А. О. Чернявский

#### 1. Цели и задачи дисциплины

Цель - обучение расчетам конструкций, работающих за пределами упругости. Задачи: - изучение свойств материала и способов их схематизации; - изучение роли предельного анализа в оценке прочности конструкций и методов определения предельных нагрузок; - изучение особенностей поведения конструкций при циклическом неупругом деформировании и методов расчета; - использование методов предельного анализа в оценке прочности и долговечности конструкций.

#### Краткое содержание дисциплины

- Диаграммы деформирования пластичных материалов и их описание. Условная и истинная диаграмма. Схематизация диаграммы и границы применимости модели идеально упруго-пластического материала. - Предельное равновесие стержневых конструкций (фермы, балки, рамы). Определение предельной нагрузки. - Предельное равновесие оболоченых конструкций. - Типы деформирования при циклическом нагружении. Свойства материалов при деформировании разных типов. Определение типа (аналитические и численные подходы), оценка прочности и долговечности.

# 2. Компетенции обучающегося, формируемые в результате освоения дисциплины

| Планируемые результаты освоения                                                                                                                                                                                                                                                                                                                                                                                         | Планируемые результаты                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОП ВО (компетенции)                                                                                                                                                                                                                                                                                                                                                                                                     | обучения по дисциплине                                                                                                                                                                                                                                                                                                                                                 |
| ПК-3 Способен для решения профессиональных задач осваивать и применять современные теории, физико-математические и вычислительные методы, а также новые системы                                                                                                                                                                                                                                                         | Знает: особенности поведения высоконагруженных конструкций при циклическом неупругом нагружении; экспериментальные данные о поведении материалов в соответствующих условиях; способы описания этих экспериментальных данных                                                                                                                                            |
| компьютерного проектирования и компьютерного инжиниринга (CAD/CAE-системы)                                                                                                                                                                                                                                                                                                                                              | деформирования конструкций и выбирать соответствующие экспериментальные данные о поведении материалов Имеет практический опыт: определения запасов прочности конструкций при повторнопеременном неупругом деформировании (по различным предельным состояниям)                                                                                                          |
| ПК-4 Способен выполнять научные исследования в области прикладной механики для различных отраслей промышленности, топливно-энергетического комплекса, транспорта и строительства, решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (САЕ-систем мирового уровня) | Знает: типовые и индивидуальные предельные состояния элементов конструкций в различных отраслях промышленности Умеет: строить расчетные модели, учитывающие особенности поведения конструкций при циклическом нагружении за пределами упругости Имеет практический опыт: применения аналитических и/или численных (компьютерных) методов решения рассматриваемых задач |

## 3. Место дисциплины в структуре ОП ВО

| Перечень предшествующих дисциплин, видов работ учебного плана                           | Перечень последующих дисциплин, видов работ                                                                                                                                        |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Цифровые двойники динамических систем, Надежность технических систем, Теория надежности | Численное моделирование разрушения,<br>Оптимальное проектирование,<br>Компьютерное моделирование в Ansys<br>Workbench,<br>Производственная практика (преддипломная) (4<br>семестр) |

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

| Дисциплина                            | Требования                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Цифровые двойники динамических систем | Знает: основные расчетные и экспериментальные методы исследования динамических свойств изделий, критерии подтверждения (проверки) адекватности создаваемой модальной математической модели Умеет: определять динамические свойства изделий при виброиспытаниях и экспериментальном модальном анализе, создавать математическую модель динамической системы, верифицированную результатами модальных испытаний Имеет практический опыт: современной аппаратурой и программным обеспечением для проведения и обработки результатов модальных и вибропрочностных испытаний, методами корректировки (уточнения) расчетной модальной математической модели по экспериментальным данным |
| Надежность технических систем         | Знает: основные понятия и определения теории надежности; методы моделирования состояния сложных технических систем на основе марковских процессов, классификацию и основные виды испытаний на надежность; методы ускоренных испытаний Умеет: составлять графы, описывающие состояние технической системы, определять характеристики надежности по результатам испытаний партии изделий Имеет практический опыт: расчетов вероятностей нахождения системы в различных состояниях и получения оценок характеристик надежности системы, получения усталостных характеристик материалов по результатам ускоренных испытаний                                                           |
| Теория надежности                     | Знает: методы испытаний в области оценки надежности конструкции, основы теории надежности Умеет: определять опытным путем характеристики надежности конструкции, применять теорию надежности при решении профессиональных задач Имеет практический опыт: получения из эксперимента характеристик                                                                                                                                                                                                                                                                                                                                                                                  |

| надежности, расчетов вероятности разрушения |
|---------------------------------------------|
| конструкции                                 |

# 4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

| Вид учебной работы                                                                            | Всего часов | Распределение по семестрам в часах Номер семестра 2 |
|-----------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|
| Общая трудоёмкость дисциплины                                                                 | 72          | 72                                                  |
| Аудиторные занятия:                                                                           | 32          | 32                                                  |
| Лекции (Л)                                                                                    | 16          | 16                                                  |
| Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)                    | 16          | 16                                                  |
| Лабораторные работы (ЛР)                                                                      | 0           | 0                                                   |
| Самостоятельная работа (СРС)                                                                  | 35,75       | 35,75                                               |
| Подготовка к зачету                                                                           | 9,75        | 9.75                                                |
| Решение задач по определению предельной нагрузки                                              | 10          | 10                                                  |
| Решение задач на применение МКЭ при однократном и повторном нагружении за пределами упругости | 16          | 16                                                  |
| Консультации и промежуточная аттестация                                                       | 4,25        | 4,25                                                |
| Вид контроля (зачет, диф.зачет, экзамен)                                                      | -           | зачет                                               |

## 5. Содержание дисциплины

| No      |                                                           | Объем аудиторных занятий по видам в                                             |   |   |    |
|---------|-----------------------------------------------------------|---------------------------------------------------------------------------------|---|---|----|
|         | Наименование разделов дисциплины                          | часах                                                                           |   |   |    |
| раздела |                                                           | часах         Всего       Л       ПЗ       ЛР         2       2       0       0 |   |   | ЛР |
| 1       | Схематизация свойств материалов за пределами<br>упругости | 2                                                                               | 2 | 0 | 0  |
| 2       | Предельное равновесие                                     | 14                                                                              | 6 | 8 | 0  |
| )       | Неупругое деформирование при циклическом нагружении       | 16                                                                              | 8 | 8 | 0  |

## 5.1. Лекции

| №<br>лекции | №<br>раздела | Наименование или краткое содержание лекционного занятия                                                                                                                                                                                                                                                    | Кол-<br>во<br>часов |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1           | 1            | Условная и истинная диаграмма деформирования. Схематизация диаграммы - идеально упруго-пластический материал, материал с деформационным упрочнением. Кинематическое и изотропное упрочнение при циклическом нагружении. Свойства, влияющие на построение схематизации (ползучесть, циклическое упрочнение) | 2                   |
| 2-3         | 2            | Стержневые системы. Расчет кинетики деформирования за пределами упругости. Предельная нагрузка. Статическая и кинематическая теорема теории предельного равновесия.                                                                                                                                        | 4                   |

| 4 |     | Пластинки и оболочки. Определение предельной нагрузки с помощью статической и кинематической теорем. Применение МКЭ. | 2 |
|---|-----|----------------------------------------------------------------------------------------------------------------------|---|
| 5 | 3   | Типы деформирования. Свойства материалов, отвечающие разным типам.                                                   | 2 |
| 6 | 3   | Упругое деформирование, приспособляемость и знакопеременное течение. Простейшие примеры. Формулировки теорем.        | 2 |
| 7 |     | Прогрессирующее формоизменение. Формулировки теорем.<br>Комбинированное деформирование.                              | 2 |
| 8 | 1 4 | Применение МКЭ. Особенности реальных конструкций (геометрическая нелинейность, упрочняющиеся материалы).             | 2 |

# 5.2. Практические занятия, семинары

| №<br>занятия | №<br>раздела | Наименование или краткое содержание практического занятия, семинара                                          |   |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------|---|
| 1            | ,            | Предельное равновесие. Фермы. Сравнение с решением в пределах<br>упругости (метод сил).                      | 2 |
| 2            | 2            | Предельное равновесие. Балки и рамы.                                                                         | 2 |
| 3            | 2            | Предельное равновесие. Пластинки и оболочки (аналитические решения).                                         | 2 |
| 4            | 2            | Предельное равновесие. Пластинки и оболочки. МКЭ.                                                            | 2 |
| 5            | 3            | Знакопеременное течение и прогрессирующее накопление деформаций. Демонстрация на стержневой системе (ферма). | 2 |
| 6-7          | •            | Задача Бри. Применение МКЭ для расчета кинетики деформирования и прямые оценки.                              | 4 |
| 8            | 3            | Поведение конструкции из упрочняющегося материала. МКЭ.                                                      | 2 |

# 5.3. Лабораторные работы

Не предусмотрены

# 5.4. Самостоятельная работа студента

| Выполнение СРС                                                                                |                                                                                                                                                                                                                                                                           |         |                     |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--|--|
| Подвид СРС                                                                                    | Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс                                                                                                                                                                                                | Семестр | Кол-<br>во<br>часов |  |  |
| Подготовка к<br>зачету                                                                        | Гохфельд Д.А., Чернявский О.Ф. Несущая способность конструкций при повторных нагружениях - М.: Машиностроение, 1979г 263с.                                                                                                                                                | 2       | 9,75                |  |  |
| предельной                                                                                    | Сопротивление материалов. Контрольные задания для расчетнографических работ Ч. 2 учеб. пособие для машиностроит. направлений А. В. Понькин и др.; ЮжУрал. гос. ун-т, Каф. Теорет. механика; ЮУрГУ http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000570703 c. 100-127 | 2       | 10                  |  |  |
| Решение задач на применение МКЭ при однократном и повторном нагружении за пределами упругости | Чернявский А.О. Нелинейные и связанные задачи в методе конечных элементов: учебное пособие. – Челябинск: Изд-во ЮУрГУ, 2021. – 62 с. с. 35-54                                                                                                                             | 2       | 16                  |  |  |

# 6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

### 6.1. Контрольные мероприятия (КМ)

| №<br>KM | Се-<br>местр | Вид<br>контроля                  | Название<br>контрольного<br>мероприятия                                                      | Bec | Макс.<br>балл | Порядок начисления баллов                                                    | Учи-<br>тыва<br>-<br>ется<br>в ПА |
|---------|--------------|----------------------------------|----------------------------------------------------------------------------------------------|-----|---------------|------------------------------------------------------------------------------|-----------------------------------|
| 1       | 2            | Текущий<br>контроль              | Контроль решения задач на определение предельной нагрузки (аналитические методы)             |     | 5             | 5 - 2 самостоятельно решенные задачи,<br>4 - 1, 0 - ни одна задача не решена | зачет                             |
| 2       | 2            | Текущий<br>контроль              | Контроль решения<br>задач на определение<br>предельной нагрузки<br>(МКЭ)                     | 1   | 5             | 5 - 2 самостоятельно решенные задачи,<br>4 - 1, 0 - ни одна задача не решена | зачет                             |
| 3       | 2            | Текущий<br>контроль              | Контроль решения задач на определение условий приспособляемости и типов деформирования (МКЭ) | 1   |               | 5 - 2 самостоятельно решенные задачи,<br>4 - 1, 0 - ни одна задача не решена | зачет                             |
| 4       | 2            | Проме-<br>жуточная<br>аттестация | зачет                                                                                        | -   | 5             | В соответствии с ответами на вопросы билета                                  | зачет                             |

## 6.2. Процедура проведения, критерии оценивания

| Вид<br>промежуточной Процедура проведения<br>аттестации |                                                     | Критерии<br>оценивания                        |
|---------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| зачет                                                   | I CUCTEME D H IVNI V DDETEILIOU HNUVSSOM NEVTONS OT | В соответствии с<br>пп. 2.5, 2.6<br>Положения |

## 6.3. Паспорт фонда оценочных средств

| Компетенции | Результаты обучения                                                                                                                                                                                                         | 1 | N<br>KN<br>2 |     | 4 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|-----|---|
| ПК-3        | Знает: особенности поведения высоконагруженных конструкций при циклическом неупругом нагружении; экспериментальные данные о поведении материалов в соответствующих условиях; способы описания этих экспериментальных данных |   | -            | + - | + |

| ПК-3 | Умеет: оценивать возможные типы деформирования конструкций и выбирать соответствующие экспериментальные данные о поведении материалов                    | +    |   | ++ |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|----|
| ПК-3 | Имеет практический опыт: определения запасов прочности конструкций при повторно-переменном неупругом деформировании (по различным предельным состояниям) | [  + |   | ++ |
| ПК-4 | Знает: типовые и индивидуальные предельные состояния элементов конструкций в различных отраслях промышленности                                           |      |   | ++ |
| ПК-4 | Умеет: строить расчетные модели, учитывающие особенности поведения конструкций при циклическом нагружении за пределами упругости                         |      | + | ++ |
| ПК-4 | Имеет практический опыт: применения аналитических и/или численных (компьютерных) методов решения рассматриваемых задач                                   |      | + | ++ |

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

#### 7. Учебно-методическое и информационное обеспечение дисциплины

#### Печатная учебно-методическая документация

- а) основная литература:
  - 1. Гохфельд Д. А. Несущая способность конструкций при повторных нагружениях / Редкол. сер.: С. Д. Пономарев (пред.) и др.. М. : Машиностроение, 1979. 263 с. : ил.
  - 2. Гохфельд Д. А. Пластичность и ползучесть элементов конструкций при повторных нагружениях. М.: Машиностроение, 1984. 256 с.: ил.
- б) дополнительная литература:
  - 1. Гохфельд Д. А. Несущая способность конструкций при повторных нагружениях / Редкол. сер.: С. Д. Пономарев (пред.) и др.. М. : Машиностроение, 1979. 263 с. : ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
  - 1. Чернявский А.О. Нелинейные и связанные задачи в методе конечных элементов: учебное пособие. Челябинск: Изд-во ЮУрГУ, 2021. 62 с.
  - 2. Чернявский О.Ф. Предельные неупругие состояния конструкций. Челябинск: Изд. ЮУрГУ, 2003. 96 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Чернявский А.О. Нелинейные и связанные задачи в методе конечных элементов: учебное пособие. Челябинск: Изд-во ЮУрГУ, 2021. 62 с.
- 2. Чернявский О.Ф. Предельные неупругие состояния конструкций. Челябинск: Изд. ЮУрГУ, 2003. 96 с.

## Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. PTC-MathCAD(бессрочно)
- 2. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

### 8. Материально-техническое обеспечение дисциплины

| Вид занятий | <b>№</b><br>ауд. | Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий |
|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Лекции      | 336<br>(2)       | Компьютер, проектор, экран                                                                                                                       |
| 1           | 332<br>(2)       | Компьютерный класс                                                                                                                               |