ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота ПОУБГУ ПОЖЛЮ-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Поторово И. Ю. Пользователь, ровотобы П

И. Ю. Потороко

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.С0.06 Компьютерная метаболомика для специальности 06.05.01 Биоинженерия и биоинформатика уровень Специалитет специализация Биоинженерия и биоинформатика форма обучения очная кафедра-разработчик Пищевые и биотехнологии

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 06.05.01 Биоинженерия и биоинформатика, утверждённым приказом Минобрнауки от 12.08.2020 № 973

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, ассистент

И. Ю. Потороко

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кари А. Пользователь: kadis [для подписания 26 06 2025

А. Кади

1. Цели и задачи дисциплины

Освоение принципов анализа и интерпретации метаболомных данных с применением вычислительных методов и программных платформ, а также получение навыков визуализации и моделирования метаболических процессов в биологических системах. Задачи дисциплины: Изучить базовые понятия метаболомики и её место в системе омісѕ-наук; Освоить методы получения и обработки метаболомных данных; Изучить основные платформы и алгоритмы для анализа метаболомных профилей; Получить практические навыки интерпретации метаболических путей с помощью биоинформатики; Применить компьютерные подходы для биомаркеров и диагностики

Краткое содержание дисциплины

Дисциплина посвящена изучению метаболомики — науки о низкомолекулярных метаболитах, их профилировании и интерпретации. Особое внимание уделяется методам обработки и анализа метаболомных данных с помощью современных вычислительных подходов. Рассматриваются статистические, визуальные и сетевые методы, а также интеграция с другими omics-данными. Практические занятия направлены на освоение инструментов анализа метаболических путей и биомаркеров.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: Основные базы данных метаболитов и
	метаболических путей (HMDB, MetaboLights,
	KEGG, Human Metabolome Database), принципы
	хранения и организации данных в биологических
	базах данных; методы анализа метаболических
	профилей и их интерпретации; стандарты
	форматов данных в метаболомике (mzML,
	mzXML); математические алгоритмы для
	обработки масс-спектрометрических данных;
ПК-5 Способен осуществлять поиск информации	
	массивами данных и современные подходы к
анализировать и передавать информацию с	интеграции метаболомических данных с
использованием цифровых средств для решения	1 - 7
задач биоинженерии; проводить оценку	Умеет: Осуществлять поиск информации в
достоверности информации, строить логические	
умозаключения на основании поступающих	метаболитам; анализировать данные с
информации и данных	использованием биоинформатических
	инструментов; проводить статистическую
	обработку метаболомических данных;
	интерпретировать результаты метаболомного
	анализа; составлять метаболические карты на
	основе полученных данных; работать с
	программным обеспечением для
	метаболомического анализа и оценивать
	качество метаболомических данных и их
	достоверность

Имеет практический опыт: Работы с базами
данных метаболитов и метаболических путей;
проведения качественного и количественного
анализа метаболитов; использования
программных пакетов для обработки
метаболомических данных; построения
метаболических сетей и путей; проведения
статистического анализа метаболомических
данных; интеграции метаболомических данных с
другими типами биологических данных;
создания отчетов и визуализации результатов
метаболомического анализа и валидации
полученных результатов и их интерпретации в
контексте биологических процессов

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Базы данных и системы управления базами	
данных,	
Моделирование белковых структур,	
Анализ омиксных данных,	He was well a server as well
Высокопроизводительные методы обработки	Не предусмотрены
данных,	
Производственная практика (технологическая,	
проектно-технологическая) (4 семестр)	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Базы данных и системы управления базами данных	Знает: Основные принципы организации и работы биологических баз данных (NCBI, UniProt, PDB, KEGG, Ensembl и др.).; методы поиска и извлечения данных из биологических баз; Основы SQL и NoSQL для работы с базами данных; современные биоинформатические инструменты для анализа биологических данных. Умеет: Формулировать запросы к базам данных для извлечения необходимой информации; анализировать и интерпретировать данные из биологических баз; применять биоинформатические ресурсы для решения задач биоинженерии; оценивать достоверность и релевантность полученных данных. Имеет практический опыт: Работы с основными базами данных (NCBI, UniProt, PDB и др.); использования биоинформатических инструментов (BLAST, Clustal, HMMER и др.); критического анализа данных и выбор оптимальных стратегий для решения задач.
Анализ омиксных данных	Знает: Основные типы омиксных данных

(геномные, транскриптомные, протеомные, метаболомические данные) и их характеристики; принципы интеграции различных типов омиксных данных для получения комплексной информации о биологических системах., Основы программирования и разработки компьютерных алгоритмов, применяемых в биоинформатике и биоинженерии; современные базы данных по биологическим объектам, включая нуклеиновые кислоты и белки, такие как NCBI, UniProt, Gene Expression Omnibus и другие; основные биоинформатические методы и инструменты для анализа омиксных данных, включая методы статистической обработки, машинного обучения и визуализации. Умеет: Применять основные биоинформатические средства для анализа омиксных данных, такие как инструменты для выравнивания последовательностей, сборки геномов, анализа экспрессии генов и протеомики; разрабатывать и применять статистические методы и модели для интерпретации и визуализации омиксных данных., Эффективно находить и использовать информацию из различных баз данных по биологическим объектам, включая нуклеиновые кислоты и белки; создавать и адаптировать компьютерные программы для обработки и анализа биоинформатических данных; интегрировать и интерпретировать результаты анализа различных типов омиксных данных для решения биологических задач. Имеет практический опыт: Проведения комплексного анализа омиксных данных с использованием различных методов и инструментов; участия в проектах, связанных с анализом омиксных данных, с применением комплексного подхода, включающего как биоинформатические, так и программные разработки; практической работы с системами управления данными и базами данных для хранения и анализа больших объемов омиксных данных., Работы с основными базами данных биологических объектов, включая нуклеиновые кислоты и белки, для поиска и анализа информации; использования специализированного программного обеспечения и инструментов для биоинформатического анализа омиксных данных; тестирования компьютерных программ и скриптов для обработки и анализа биоинформатических данных, включая создание интерфейсов для пользователей.

Высокопроизводительные методы обработки данных

Знает: современные программные пакеты, применяемые для моделирования и оптимизации технологических процессов, современные методы обработки информации, применяемые для решения задач профессиональной

современные
ия расчетов в
ельности,
менные методы
ения инженерно-
актический
лгоритмов
хнологий,
вания для
й деятельности
мпьютерных
и свойств
омпьютерных
и свойств
граммы для
и, разрабатывать
ыми структурами
ния
ожений для
и, создания
ожений для
И
ческого анализа
ующего
цы
и для получения
аправленно
изировать
роводить
ситуаций на
оды
ги и методы
ия Имеет
анализа
ующем
ционных
ОВ
ги

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 74,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 8
Общая трудоёмкость дисциплины	144	144
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды	32	32

аудиторных занятий (ПЗ)		
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	69,5	69,5
Подготовка к итоговому тестированию	19,5	19.5
Подготовка к тестированию по материалам лекций	25	25
Подготовка к лабораторным работам	25	25
Консультации и промежуточная аттестация	10,5	10,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в				
	Наименование разделов дисциплины	часах				
раздела		Всего	Л	П3	ЛР	
1	Введение в метаболомику	16	8	8	0	
2	Компьютерные методы обработки данных	16	8	8	0	
3	Интерпретация метаболических путей	16	8	8	0	
4	Применение метаболомики в медицине и биотехнологии	16	8	8	0	

5.1. Лекции

№	№	Наименование или краткое содержание лекционного занятия	
лекции	раздела		
1	1	Понятие метаболомики и её задачи	4
2	1	Методы получения данных	4
3	2	Іринципы нормализации и фильтрации	
4	2	Статистический анализ	
5	3	Анализ KEGG, Reactome	
6	3	Сетевой подход в метаболомике	
7	4	Биомаркеры и диагностические панели	
8	4	Метаболомика в микробиоме	4

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	
1	•	Обзор метаболомных баз данных	4
2	1	Работа с открытыми репозиториями	4
3	2	РСА и кластеризация метаболитов	4
4	2	Визуализация heatmap	
5	3	Работа с Pathway Tools	4
6	3	Моделирование метаболических путей	4
7	4	Построение диагностической модели	4
8	4	Интеграция с транскриптомикой	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Семестр	Кол- во часов			
Подготовка к итоговому тестированию	ПУМД	8	19,5		
Подготовка к тестированию по материалам лекций	ПУМД	8	25		
Подготовка к лабораторным работам	8	25			

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	8	Проме- жуточная аттестация	Итоговое тестирование	-	30	Тест включает 15 вопросов. Каждый вопрос оценивается в 2 балл. Максимальный балл - 30. Пороговое значение для прохождения теста и получения зачета - 18 баллов.	экзамен
2	8	Текущий контроль	Защита лабораторных работ	1	20	Максимальное количество баллов за КМ - 20. Оценка за лабораторную складывается из: - оценки за оформление отчета: отчет оформлен по требованиям, представлен в установленные сроки, все задания выполнены в полном объеме - 1 балл отчет оформлен не по требованиям, представлен позже установленного срока, выполнены не все задания - 0 баллов; - оценки за защиту работы: студент ответил на все вопросы, показал хорошее владение теоретическим материалом, способен объяснить результаты работы, владеет терминологией - 4 балла студент ответил на большинство вопросов, испытывает затруднение с отдельными вопросами, может объяснить результаты работы, использует соответствующую терминологию - 3 балла студент затрудняется ответить на вопросы, или допускает серьезные неточности в ответах, способен объяснить результаты работы, слабо владеет терминологией - 2 балла; студент не может ответить на	экзамен

		вопросы, не способен объяснить	
		результаты работы, не владеет	
		терминологией - 0 баллов.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	1	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		
ПК-5	Знает: Основные базы данных метаболитов и метаболических путей (HMDB, MetaboLights, KEGG, Human Metabolome Database), принципы хранения и организации данных в биологических базах данных; методы анализа метаболических профилей и их интерпретации; стандарты форматов данных в метаболомике (mzML, mzXML); математические алгоритмы для обработки масс-спектрометрических данных; принципы работы с метаболомическими массивами данных и современные подходы к интеграции метаболомических данных с другими типами «омиков»	+	+
ПК-5	Умеет: Осуществлять поиск информации в специализированных базах данных по метаболитам; анализировать данные с использованием биоинформатических инструментов; проводить статистическую обработку метаболомических данных; интерпретировать результаты метаболомного анализа; составлять метаболические карты на основе полученных данных; работать с программным обеспечением для метаболомического анализа и оценивать качество метаболомических данных и их достоверность	+	+
ПК-5	Имеет практический опыт: Работы с базами данных метаболитов и метаболических путей; проведения качественного и количественного анализа метаболитов; использования программных пакетов для обработки метаболомических данных; построения метаболических сетей и путей; проведения статистического анализа метаболомических данных; интеграции метаболомических данных с другими типами биологических данных; создания отчетов и визуализации результатов метаболомического анализа и валидации полученных результатов и их интерпретации в контексте биологических процессов	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Квалификационные требования, характеристики должностей, нормативы труда работников гостиничного хозяйства и общественного питания : Практ. пособие / Сост. С. С. Скобкин. М. : Экономисть, 2004. 190, [1] с.
- 2. Сборник рецептур блюд и кулинарных изделий: Для предприятий общественного питания / авт.-сост. А. И. Здобнов, В. А. Цыганенко. М.; Киев: Лада: Арий, 2008. 678, [1] с.
- 3. Голубев В. Н. Справочник работника общественного питания / В. Н. Голубев, М. П. Могильный, Т. В. Шленская; Под ред. В. Н. Голубева. М. : ДеЛи принт, 2003. 589 с.
- б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Метаболомика: основы, методы и применения М.: Наука, 2021.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Метаболомика: основы, методы и применения — М.: Наука, 2021.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Не предусмотрено