ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Архитектурно-строительный институт

Электронный документ, подписыный ПЭП, хранится в системе электронного документооборота (Южно-Уральского государственного университета СЕЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ульрих Д. В. Пользователь: цийком разделийком до

Д. В. Ульрих

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П2.03 Методы решения задач теплообмена для направления 08.03.01 Строительство уровень Бакалавриат профиль подготовки Теплогазоснабжение и микроклимат зданий форма обучения заочная кафедра-разработчик Градостроительство, инженерные сети и системы

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 08.03.01 Строительство, утверждённым приказом Минобрнауки от 31.05.2017 № 481

Зав.кафедрой разработчика, д.техн.н., доц.

Электронный документ, водинеанный ПЭП, хранится в системе электронного документооброрта (Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ульрых Д. В. Пользователь (rikhdv lara подписания: 26.01.2022

Д. В. Ульрих

Разработчик программы, к.техн.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южно-Уральского госуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Панферов С. В. Пользователь ранferows

С. В. Панферов

СОГЛАСОВАНО

Руководитель образовательной программы к.техн.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе эмектронного документооборога ЮхргУ (Охино-Уральского государственного унверситета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Аписимова Е. Ю. Пользователь: ansimovaci

Е. Ю. Анисимова

1. Цели и задачи дисциплины

Целью дисциплины является комплексное изучение технической термодинамики и тепломассобмена как инженерной дисциплины. В результате освоения дисциплины обучающиеся должны освоить методы выполнения расчётов основных процессов тепломассообмена: теплопроводности в элементах конструкций, тепломассообмена при свободной и вынужденной конвекции, двухфазного тепломассообмена, радиационного тепломассообмена, научиться расчитывать тепломассообменные аппараты и применять методы интенсификациии теплопередачи.

Краткое содержание дисциплины

Введение. Предмет курса. Стационарная и нестационарная теплопроводность. Конвективный теплообмен. Теплообмен при фазовых превращениях. Элементы теории теплообмена. Тепловое излучение. Расчёты теплообменных аппаратов.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
OH BO (ROMHETCHIMIN)	-
	Знает: законы и основные физико-
	математические модели переноса теплоты и
	массы применительно к теплотехническим и
	теплотехнологическим установкам и системам.
	Умеет: рассчитывать температурные поля (поля
ПК-3 Способен проводить оценку технических и	концентраций веществ) в потоках
технологических решений систем	технологических жидкостей и газов, в элементах
теплогазоснабжения и микроклимата зданий	конструкции тепловых и теплотехнологических
теплогизостиожения и микрокеници здини	установок с целью интенсификации процессов
	теплообмена.
	Имеет практический опыт: основ расчёта
	процессов теплопереноса в элементах
	теплотехнического и теплотехнологического
	оборудования.
	Знает: основы расчёта процессов теплопереноса
	в элементах теплотехнического и
	теплотехнологического оборудования.
	Умеет: рассчитывать температурные поля (поля
ПК 4 С	концентраций веществ) в потоках
ПК-4 Способен выполнять обоснование	технологических жидкостей и газов, в элементах
проектных решений, расчет и проектирование	конструкции тепловых и теплотехнологических
систем теплогазоснабжения и микроклимата	установок с целью интенсификации процессов
зданий	теплообмена.
	Имеет практический опыт: основ расчёта
	процессов теплопереноса в элементах
	теплотехнического и теплотехнологического
	оборудования.
	Знает: законы и основные физико-
ПК-5 Способен организовывать работы по	математические модели переноса теплоты и
эксплуатации и техническому обслуживанию	массы применительно к теплотехническим и
систем теплогазоснабжения и микроклимата	теплотехнологическим установкам и системам.
зданий	Умеет: обеспечивать нормальный температурный
	р мест. обсенстивать пормальный температурный

режим работы элементов оборудования и
минимализировать потери теплоты;
рассчитывать передаваемые тепловые потоки.
Имеет практический опыт: основ расчёта
процессов тепломассопереноса в элементах
теплотехнического и теплотехнологического
оборудования.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
	Водно-химические режимы систем
	теплоснабжения,
	Теплотехнические измерения,
	Природные источники теплоты,
	Теплоснабжение,
	Гидравлические режимы и надежность тепловых
	сетей,
	Отопление,
	Практикум по теплогенерирующим установкам,
	Кондиционирование воздуха и холодоснабжение,
Техническая термодинамика,	Газоснабжение,
Тепломассообмен,	Промышленная вентиляция и охрана воздушного
Гидравлика инженерных систем	бассейна,
	Насосы, вентиляторы, компрессоры,
	Автоматизация систем теплогазоснабжения и
	микроклимата зданий,
	Вентиляция,
	Теплогенерирующие установки,
	Водоподготовка,
	Производственная практика, преддипломная
	практика (9 семестр),
	Производственная практика, исполнительская
	практика (8 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: основные понятия и законы
	термодинамики; термодинамические процессы и
	циклы преобразования энергии, протекающие в
	теплотехнических установках. Умеет:
	пользоваться справочными данными и
	информационными базами по теплофизическим
Техническая термодинамика	свойствам веществ; проводить анализ
	эффективности циклов тепловых двигателей,
	холодильных установок и тепловых насосов с
	расчетом количественных характеристик этой
	эффективности. Имеет практический опыт:
	расчета и анализа эффективности циклов
	тепловых двигателей, холодильных установок и

	тепловых насосов с расчетом количественных
	характеристик этой эффективности.
	Знает: фундаментальные законы гидростатики и
	гидродинамики, необходимые для понимания
	функционирования инженерных систем. Умеет:
Гидравлика инженерных систем	определять гидравлические сопротивления и
	потери напора при движении жидкости. Имеет
	практический опыт: расчета гидравлических
	параметров инженерных систем.
	Знает: законы и основные физико-
	математические модели переноса теплоты и
	массы применительно к теплотехническим и
	теплотехнологическим установкам и системам.,
	основамы расчёта процессов теплопереноса в
	элементах теплотехнического и
	теплотехнологического оборудования., законы и
	основные физико-математические модели
	переноса теплоты и массы применительно к
	теплотехническим и теплотехнологическим
	установкам и системам. Умеет: рассчитывать
	температурные поля (поля концентраций
	веществ) в потоках технологических жидкостей
	и газов, в элементах конструкции тепловых и
	теплотехнологических установок с целью
	интенсификации процессов теплообмена.,
Тепломассообмен	рассчитывать температурные поля (поля
Тепломассоомен	концентраций веществ) в потоках
	технологических жидкостей и газов, в элементах
	конструкции тепловых и теплотехнологических
	установок с целью интенсификации процессов
	теплообмена., обеспечивать нормальный
	температурный режим работы элементов
	оборудования и минимализировать потери
	теплоты; рассчитывать передаваемые тепловые
	потоки. Имеет практический опыт: основ расчёта
	процессов теплопереноса в элементах
	теплотехнического и теплотехнологического
	оборудования., основ расчёта процессов
	теплопереноса в элементах теплотехнического и
	теплотехнологического оборудования., основ
	расчёта процессов тепломассопереноса в
	элементах теплотехнического и
	теплотехнологического оборудования.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 12,25 ч. контактной работы

		Распределение по семестрам
D × ×	Всего часов	в часах
Вид учебной работы		Номер семестра
		6

Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	8	8
Лекции (Л)	0	0
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	8	8
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	59,75	59,75
с применением дистанционных образовательных технологий	0	
Подготовка к зачету	20,75	20.75
Подготовка к практическим занятиям	39	39
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в					
	Наименование разделов дисциплины	часах					
раздела		Всего	Л	П3	ЛР		
1	Стационарная и нестационарная	2	0	2	0		
1	теплопроводность	2					
2	Конвективный теплообмен	2	0	2	0		
3	Теплообмен при фазовых превращениях	0,5	0	0,5	0		
4	Элементы теории массообмена	0,5	0	0,5	0		
5	Тепловое излучение	2	0	2	0		
6	Расчёт теплообменных аппаратов	1	0	1	0		

5.1. Лекции

Не предусмотрены

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Стационарная передача теплоты через плоскую стенку. Стационарная передача теплоты через цилиндрическую стенку.	1
2	1	Стационарная передача теплоты через шаровую стенку. Нестационарная теплопроводность.	1
3	2	Конвективный теплообмен	2
4	3	Конвективный теплообмен. Теория подобия	0,5
5	4	Элементы теории массообмена	0,5
6	5	Лучистый теплообмен в лучепрозрачной среде	1
7	5	Лучистый теплообмен в излучающих и поглощающих средах	1
8	6	Теплообменные аппараты	1

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Подготовка к зачету	ПУМД, осн 1, доп 1-6	6	20,75			
Подготовка к практическим занятиям	ПУМД, доп. 3, стр. 5-58, 185-216	6	39			

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	6	Текущий контроль	Контрольная работа 1	1	3	Решенная задача без ошибок - 3 балла; Решенная задача, имеющая незначительные ошибки - 2 балла; Решенная задача с грубыми ошибками - 1 балл; Нерешенная задача - 0 баллов.	зачет
2	6	Текущий контроль	Контрольная работа 2	1	3	Решенная задача без ошибок - 3 балла; Решенная задача, имеющая незначительные ошибки - 2 балла; Решенная задача с грубыми ошибками - 1 балл; Нерешенная задача - 0 баллов.	зачет
3	6	Проме- жуточная аттестация	Зачет	-	5	5 баллов - выставляется студенту, в полном объёме решившему обе задачи. 4 балла - выставляется студенту, в неполном объёме решившему обе задачи. 3 балла - выставляется студенту, в неполном объёме решившему обе задачи с ошибками и недочетами. 2 балла - выставляется студенту, сумевшему решить только одну задачу, вторая задача не решена. 1 балл - выставляется студенту, который решил только одну задачу со значительными ошибками и недочетами. 0 баллов - выставляется студенту, который не решил обе задачи.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
------------------------------------	----------------------	------------------------

ээцет	Устный зачёт. Обучающиеся берут билеты и в течении 30 минут решают две задачи. После этого обучающийся подтверждает свои знания устно объясняя преподавателю суть метода и ход решения задач.	пп 25.26
-------	---	----------

6.3. Оценочные материалы

Компетенции	Результаты обучения	I	№ (N 2	Л
ПК-3	Знает: законы и основные физико-математические модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам.			
ПК-3	Умеет: рассчитывать температурные поля (поля концентраций веществ) в потоках технологических жидкостей и газов, в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов теплообмена.	+	+	+
ПК-3	Имеет практический опыт: основ расчёта процессов теплопереноса в элементах теплотехнического и теплотехнологического оборудования.	+	+	+
ПК-4	Знает: основы расчёта процессов теплопереноса в элементах теплотехнического и теплотехнологического оборудования.	+	+	+
ПК-4	Умеет: рассчитывать температурные поля (поля концентраций веществ) в потоках технологических жидкостей и газов, в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов теплообмена.	+	+	+
ПК-4	Имеет практический опыт: основ расчёта процессов теплопереноса в элементах теплотехнического и теплотехнологического оборудования.	+	+	+
ПК-5	Знает: законы и основные физико-математические модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам.	+	+	+
ПК-5	Умеет: обеспечивать нормальный температурный режим работы элементов оборудования и минимализировать потери теплоты; рассчитывать передаваемые тепловые потоки.	;+	+	+
ПК-5	Имеет практический опыт: основ расчёта процессов тепломассопереноса в элементах теплотехнического и теплотехнологического оборудования.	+	+	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Цветков, Ф. Ф. Тепломассообмен [Текст] учебник для вузов по направлению "Теплоэнергетика" Ф. Ф. Цветков, Б. А. Григорьев. М.: Издательский дом МЭИ, 2011. 559 с. ил.

б) дополнительная литература:

- 1. Беляев, Н. М. Основы теплопередачи Учебник. Киев: Выща школа, 1989. 343 с. ил.
- 2. Исаченко, В. П. Теплопередача Учебник для теплоэнерг. спец. втузов. 4-е изд., перераб. и доп. М.: Энергоиздат, 1981. 417 с. ил.

- 3. Краснощеков, Е. А. Задачник по теплопередаче Учеб. для вузов. 4-е изд., перераб. М.: Энергия, 1980. 287 с. ил.
- 4. Михеев, М. А. Основы теплопередачи [Текст] М. А. Михеев, И. М. Михеева. 3-е изд., репр. М.: БАСТЕТ, 2010. 342, [1] с. ил., табл.
- 5. Элементы теории систем и численные методы моделирования процессов тепломассопереноса Учеб. для вузов по специальности "Теплофизика, автоматизация и экология пром. печей" В. С. Швыдкий, Н. А. Спирин, М. Г. Ладыгичев и др.; Под ред. В. С. Швыдкого. М.: Интермет Инжиниринг, 1999. 519 с.
- 6. Юдаев, Б. Н. Техническая термодинамика. Теплопередача Учеб. для неэнерг. спец. втузов. М.: Высшая школа, 1988. 478 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:

1. -

из них: учебно-методическое обеспечение самостоятельной работы студента: 1. -

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары		основное оборудование для проведения практических занятий, справочная литература
Лекции	330 (Π)	демонстрационный аудиторный комплекс (мультимедийная установка), предустановленное программное обеспечение Microsoft-Office, Microsoft-Windows.