ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Южно-Уральского государственного универентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Кому выдан: Гамов П. А. Пользователь: gamory вызыки: 33 09

П. А. Гамов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.21 Тепломассообмен в процессах и материалах для направления 22.03.02 Металлургия уровень Бакалавриат форма обучения заочная кафедра-разработчик Материаловедение и физико-химия материалов

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 22.03.02 Металлургия, утверждённым приказом Минобрнауки от 02.06.2020 № 702

Зав.кафедрой разработчика, д.хим.н., доц.

Разработчик программы, к.хим.н., доц., доцент

Электронный документ, подписанный ПЭЦ, хранитея в системе электронного документооборота Южнь-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Винник Д. А. Пользователь: vinnikda Патводинский с 709 2023

Электронный документ, подписанный ПЭП, хрынтев в системе электронныго документоборота Южно-Уральського государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Колу выдан: Расс Г. М. Подлозователь: тукувт Дата подписания: 07.09.2023

Д. А. Винник

Г. М. Рысс

1. Цели и задачи дисциплины

Цель - изучение основных закономерностей процессов переноса количества движения, тепла и растворенного вещества в твердых, жидких и газообразных средах, а также подготовка студента к изучению других общепрофессиональных и специальных дисциплин. Задачи. В результате изучения дисциплины студент должен: знать законы переноса, режимы движения жидкости и газа, элементы теории подобия, основы теплообмена излучением, механизм тепло- и массообмена, а также связь между этими процессами в зависимости от гидродинамической обстановки процесса; уметь использовать основные понятия, законы и модели процессов тепло-массопереноса; систематизировать тепловые и диффузионные процессы; протекающие в металлургических агрегатах; проводить теоретический анализ реальных процессов и на основе такого анализа активно влиять на проведение процессов производства металлов; владеть методами расчета процессов тепломассообмена при решении конкретных задач движения жидкости и газа, теплопроводности, переноса количества движения, тепла и вещества.

Краткое содержание дисциплины

Жидкости и газы как сплошные среды. Законы Ньютона, Фурье и Фика. Общие уравнения движения и равновесия сплошных сред. Движение вязкой несжимаемой жидкости. Дифференциальные уравнения переноса тепла и растворенного вещества. Стационарные и нестационарные процессы переноса тепла и растворенного вещества. Элементы теории подобия и моделирования. Теплообмен излучением.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ОПК-4 Способен проводить измерения и наблюдения в сфере профессиональной	Знает: основы теории тепломассообмена, законы переноса, режимы движения жидкости и газа, элементы теории подобия, основы теплообмена излучением, механизм тепло- и массообмена, а также связь между этими процессами в зависимости от гидродинамической обстановки процесса Умеет: использовать основные понятия, законы и модели процессов тепло-массопереноса; систематизировать тепловые и диффузионные процессы; протекающие в агрегатах; проводить теоретический анализ реальных процессов; владеть методами расчета процессов тепломассообмена при решении конкретных задач движения жидкости и газа, теплопроводности, переноса количества движения, тепла и вещества Имеет практический опыт: применения методов эксперимента и расчета теплоэнергетического оборудования при решении конкретных задач в области профессиональной деятельности
ОПК-6 Способен принимать обоснованные	Знает: теплофизические характеристики рабочих

технические решения в профессиональной	сред; основные законы переноса теплоты
деятельности, выбирать эффективные и	теплопроводностью, конвекцией и излучением;
безопасные технические средства и технологии	математические модели процессов теплообмена
	(дифференциальные уравнения
	теплопроводности, интегральные уравнения
	радиационного теплообмена, уравнение
	теплопередачи, уравнение теплового баланса);
	принципы расчета теплообменных аппаратов
	Умеет: математически формулировать задачи
	теплопроводности для тел правильной формы;
	правильно выбирать и определять коэффициенты
	теплообмена; применять различные методы
	решения задач теплообмена
	Имеет практический опыт: владения навыками
	расчета теплообменных аппаратов; различными
	методами решения задач стационарной и
	нестационарной теплопроводности для тел
	правильной формы

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин, вилов работ
видов работ учебного плана 1.О.10.02 Органическая химия, 1.О.08.01 Алгебра и геометрия, 1.О.08.03 Специальные главы математики, 1.О.14 Теоретическая механика, 1.О.11 Физическая химия,	видов работ 1.О.33 Безопасность жизнедеятельности, ФД.02 Экологически чистые металлургические процессы, 1.О.24.02 Металлургия цветных металлов, 1.О.31 Научно-исследовательская работа, 1.О.27 Физико-химия металлургических процессов, ФД.03 Инжиниринг технологического
1.О.10.01 Неорганическая химия, 1.О.08.02 Математический анализ, Учебная практика (научно-исследовательская работа, получение первичных навыков научно-исследовательской работы) (4 семестр)	оборудования, 1.О.26 Методы контроля и анализа материалов, 1.О.24.01 Металлургия черных металлов, 1.О.22 Методы анализа и обработки
исследовательской работы) (4 семестр)	экспериментальных данных, 1.О.28 Коррозия и защита металлов, 1.О.24.03 Литейное производство, 1.О.20 Электротехника и электроника

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: сведения по теоретической механике,
	необходимые для применения в конкретной
	предметной области при изготовлении
	металлургической продукции, основные законы
1.О.14 Теоретическая механика	классической механики; теорию и методы
	расчета кинематических параметров движения
	механизмов; методы решения статически
	определенных задач, связанных с расчетом сил
	взаимодействия материальных объектов; теорию

и методы решения задач динамики на базе основных законов и общих теорем ньютоновской механики, принципов аналитической механики и теории малых колебаний, фундаментальные понятия кинематики и кинетики, основные законы равновесия и движения материальных объектов Умеет: использовать математические и физические модели для расчета характеристик деталей и узлов металлургической продукции, строить математические модели механических явлений и процессов; анализировать и применять знания по теоретической механике при решении конкретных практических задач, моделирующих процессы и состояния объектов, изучаемых в специальных дисциплинах теоретического и экспериментального исследования, применять законы механики, составлять математические модели (уравнения), решающие ту или иную задачу механики, решать типовые задачи кинематики, статики и динамики и анализировать полученный результат Имеет практический опыт: расчета и проектирования технических объектов в соответствии с техническим заданием, владения методами теоретического исследования механических явлений и процессов, методами моделирования задач механики, умением решать созданные математические модели Знает: основные понятия операционного исчисления, гармонического анализа, теории функций комплексного переменного, способы анализа данных с применением теории вероятностей и математической статистики, базовые понятия, необходимые для решения задач теории вероятностей и математической статистики, освоения других дисциплин и самостоятельного приобретения знаний; источники самостоятельного получения новых знаний по математическим дисциплинам Умеет: применять математические понятия и методы при решении прикладных задач, анализировать 1.О.08.03 Специальные главы математики данные с применением теории вероятностей и математической статистики. исследовать математические модели на основе объектов теории вероятностей и математической статистики Имеет практический опыт: владения математическими методами для решения задач производственного характера; методами построения математической модели профессиональных задач и интерпретации полученных результатов, применения теории вероятностей и математической статистики, преобразования данных, представленных в виде объектов теории вероятностей и математической статистики 1.О.08.01 Алгебра и геометрия Знает: методы линейной алгебры и

	аналитической геометрии, применяемые для
	построения и анализа математических моделей
	объектов профессиональной деятельности,
	основные методы решения типовых задач
	линейной алгебры и аналитической геометрии,
	объекты линейной алгебры и аналитической
	геометрии, применяемые при решении
	технических задач Умеет: применять изученные
	свойства объектов линейной алгебры и
	аналитической геометрии для решения задач с
	практическим содержанием, выбирать методы и
	алгоритмы решения задач линейной алгебры и
	аналитической геометрии; использовать
	математический язык и математическую
	символику, анализировать условие поставленной
	задачи с целью выявления применимости
	имеющихся знаний и умений для ее решения;
	использовать язык и символику линейной
	алгебры и аналитической геометрии для
	исследования свойств объектов из различных
	областей деятельности Имеет практический
	опыт: поиска и освоения необходимых для
	решения задачи новых знаний, методами решения задач линейной алгебры и
	аналитической геометрии, владеет методами
	решения задач линейной алгебры и
	аналитической геометрии.
	1
	Знает: опасность органических соединений для окружающей среды и человека, теорию строения
	органических соединений, зависимость
	химических свойств органических веществ от их
	состава и строения Умеет: предсказывать
	химические свойства органического вещества по
	его составу и строению, моделировать результат
	органических реакций в зависимости от условий,
	определять реакционные центры в молекулах
	органических соединений, записывать уравнения
1.О.10.02 Органическая химия	органических реакций в молекулярной и
	структурной формах. Имеет практический опыт:
	безопасной работы в лаборатории органической
	химии, проведения эксперимента с
	органическими веществами, классификации
	органических соединений, определения
	реакционной способности органических
	соединений в зависимости от условий
	проведения процесса, пространственного
	представления строения молекул органических
	веществ
	Знает: базовые понятия физической химии и
	закономерности химических процессов,
	основные закономерности физико-химических
1.О.11 Физическая химия	процессов Умеет: проводить простые операции
THE THE TWO IS NOT THE THE THE THE THE THE THE THE THE TH	(схем процессов, первичного анализа результатов
	и т.п.), воспроизводить основные понятия
	физической химии, химической технологии и
	закономерностей химических процессов, решать

	1			
	частные задачи, моделирующие реальные			
	процессы и делать выводы Имеет практический			
	опыт: работы с учебной литературой по			
	физической химии, структурировать материал,			
	выделять главную мысль, формировать смыслы			
	базовых химических понятий, владения			
	основными понятиями, методами расчета и			
	оформления решения полученных заданий			
	Знает: основные математические методы,			
	методы математического анализа, применяемые			
	для построения и исследования математических			
	моделей объектов профессиональной			
	деятельности, объекты математического анализа,			
	применяемые при решении технических задач,			
	основные математические методы, применяемые			
	в исследовании профессиональных проблем			
	Умеет: принимать обоснованные экономические			
	решения в различных областях			
	жизнедеятельности, применять методы			
.О.08.02 Математический анализ	математического анализа для построения и			
	исследования математических моделей,			
	анализировать условие поставленной задачи с			
	целью выявления применимости имеющихся			
	знаний и умений для ее решения, использовать			
	основные математические понятия в			
	профессиональной деятельности Имеет			
	практический опыт: решения задач методами			
	математического анализа, преобразования			
	объектов математического анализа, навыками			
	систематизации информации, решения задач			
	методами математического анализа			
	Знает: элементарные и сложные вещества.			
	химические реакции, основные понятия, законы			
	и модели термодинамики, химической кинетики,			
	переноса тепла и массы Умеет: принимать			
	обоснованные решения, выбирать эффективные			
1.О.10.01 Неорганическая химия	и безопасные технические средства и			
11.0.10.01 Heopfulli fockus knishis	технологии, использовать основные понятия,			
	законы и модели термодинамики, химической			
	кинетики, переноса тепла и массы Имеет			
	практический опыт: расчетов по уравнениям			
	химических реакций, использования теории и			
	практики для решения инженерных задач			
	Знает: способы анализа научной информации и			
	данных, методы моделирования физических,			
	химических и технологических процессов,			
	принципы работы современных			
	информационных технологий, современные			
Учебная практика (научно-исследовательская	информационные технологии в научно-			
работа, получение первичных навыков научно-	исследовательской работе Умеет: проводить			
исследовательской работы) (4 семестр)	первичный анализ полученных результатов,			
	представлять результаты, делать выводы,			
	составлять и оформлять отчеты, выбирать и			
	применять соответствующие методы			
	моделирования физических, химических и			
	технологических процессов, использовать			

современные информационных технологии при проведении НИР, решать научно-
исследовательские задачи Имеет практический
опыт: оформления документации в соответствии
с требованиями гост; решения
профессиональных задач в области металлургии
и металлообработки с использованием
информационных технологий и прикладных
программных средств, выбора и применения
соответствующих методов моделирования
физических, химических и технологических
процессов, работы с сайтами
https://www1.fips.ru/ и https://scholar.google.ru/,
применения прикладных аппаратно-
программных средств в научно-
исследовательской работе

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 18,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 5
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	12	12
Лекции (Л)	8	8
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	4	4
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	89,5	89,5
Подготовка ответов на вопросы по теоретической части курса	33,5	33.5
Подготовка к зачету	20	20
Решение задач	36	36
Консультации и промежуточная аттестация	6,5	6,5
Вид контроля (зачет, диф.зачет, экзамен)	-	диф.зачет

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
		Всего	Л	ПЗ	ЛР	
	Введение. Жидкости и газы как сплошные среды. Кинематика сплошных сред.	2	2	0	0	
	Законы переноса энергии, массы и импульса. Дифференциальные уравнения переноса тепла и растворенного вещества. Элементы теории подобия и моделирования.	2	2	0	0	

I	3	Процессы переноса тепла и растворенного вещества	4	2	2	0
Ī	4	Теплообмен излучением	4	2	2	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		Введение. Жидкости и газы как сплошные среды. Кинематика и статика сплошных сред.	2
2	2	Законы переноса. Дифференциальные уравнения переноса тепла. Дифференциальные уравнения переноса растворенного вещества. Элементы теории подобия и моделирования.	2
3	3	Стационарные процессы переноса тепла. Стационарные процессы переноса растворенного вещества. Нестационарные процессы переноса. Процессы тепло- и массопереноса через пограничный слой.	2
4	4	Основные характеристики теплообмена излучением. Абсолютно черные и серые тела. Теплообмен излучением в системах твердое - поглощающий газ. Сложный теплообмен.	2

5.2. Практические занятия, семинары

№	№	Наименование или краткое содержание практического занятия, семинара	
занятия	раздела		
1	3	Расчеты переноса тепла и вещества.	2
2	4	Расчет теплообмена излучением	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС			
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Подготовка ответов на вопросы по теоретической части курса	ПУМД осн. 1; доп. 1. ЭУМД 2-4.	5	33,5
Подготовка к зачету		5	20
Решение задач	ПУМД МПСР 1, 2; ЭУМД 1, 4.	5	36

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ Се- Вид Название Вес Макс. Порядок начисления баллов Учи-	
---	--

КМ	местр	контроля	контрольного мероприятия		балл		тыва- ется в ПА
1	5	Текущий контроль	Проверка решения задач	1	15	Студент решает 5 задач по курсу. При оценивании результатов мероприятия используется балльнорейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора № 179 от 24.05.2019 г. и № 25-13/09 от 10.03.2022). Правильно решенная и оформленная задача оценивается в 3 балла. Задача, решенная с погрешностями в расчетах или оформлении, оценивается в 2,5 балла. Задача решенная верно, но с существенными погрешностями, оценивается в 2 балла. Задача, решенная неверно или не решенная, не оценивается.	дифференцированный зачет
2	5	Текущий контроль	Проверка индивидуального задания по теоретической части курса	1	10	Студент выполняет письменный ответ на 5 вопросов по теоретической части курса. При оценивании результатов мероприятия используется балльно-рейтинговая система (БРС) оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора № 179 от 24.05.2019 г. и № 25-13/09 от 10.03.2022). Правильный ответ на теоретический вопрос оценивается в 2 балла. Ответ на теоретический вопрос, выполненный с погрешностями, оценивается в 1 балл (после защиты ответа оценка может быть повышена до 2 баллов). Отсутствие ответа на теоретический вопрос оценивается в 0 баллов.	дифференцированный зачет
3	5	Проме- жуточная аттестация	Контрольное мероприятие промежуточной аттестации	-	9	Промежуточная аттестация проводится в письменном виде, в билете 3 вопроса, время на подготовку – 1 ч. После проверки	дифференцированный зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
дифференцированный зачет	"Хорошо" - величина реитинга обучающегося по писциплине 75 84 %: "Уловлетворительно" - величина	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения]	№ KN 2	Л
ОПК-4	Знает: основы теории тепломассообмена, законы переноса, режимы движения жидкости и газа, элементы теории подобия, основы теплообмена излучением, механизм тепло- и массообмена, а также связь между этими процессами в зависимости от гидродинамической обстановки процесса	+	+	+
ОПК-4	Умеет: использовать основные понятия, законы и модели процессов тепло-	+	+	+

				_
	массопереноса; систематизировать тепловые и диффузионные процессы; протекающие в агрегатах; проводить теоретический анализ реальных процессов; владеть методами расчета процессов тепломассообмена при решении конкретных задач движения жидкости и газа, теплопроводности, переноса количества движения, тепла и вещества			
ОПК-4	Имеет практический опыт: применения методов эксперимента и расчета теплоэнергетического оборудования при решении конкретных задач в области профессиональной деятельности	+		+
ОПК-6	Знает: теплофизические характеристики рабочих сред; основные законы переноса теплоты теплопроводностью, конвекцией и излучением; математические модели процессов теплообмена (дифференциальные уравнения теплопроводности, интегральные уравнения радиационного теплообмена, уравнение теплопередачи, уравнение теплового баланса); принципы расчета теплообменных аппаратов	+		+
ОПК-6	Умеет: математически формулировать задачи теплопроводности для тел правильной формы; правильно выбирать и определять коэффициенты теплообмена; применять различные методы решения задач теплообмена	+	+	+
ОПК-6	Имеет практический опыт: владения навыками расчета теплообменных аппаратов; различными методами решения задач стационарной и нестационарной теплопроводности для тел правильной формы	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Токовой, О. К. Основы тепломассообмена для бакалавров [Текст] учеб. пособие по направлению 22.00.00 "Технологии материалов" О. К. Токовой; Юж.-Урал. гос. ун-т, Каф. Материаловедение и физико-химия материалов; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2017. 195, [1] с. ил. электрон. версия
- б) дополнительная литература:
 - 1. Кривандин, В. А. Металлургическая теплотехника Т. 1 Теоретические основы Учебник Под науч. ред. В. А. Кривандина. М.: Металлургия, 1986. 424 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. 1. Кириллов, В. В. Теоретические основы теплотехники. Тепломассообмен Текст учебное пособие для самостоят. работы студентов В. В. Кириллов; Юж.-Урал. гос. ун-т, Каф. Пром. теплоэнергетика; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008. 71, [1] с.
 - 2. Токовой, О. К. Тепломассообмен: учеб. пособие для студентов физ.-металлург. фак. / О. К. Токовой. Челябинск: Издательский Центр ЮУрГУ, 2012. 47] с.

- 1. 1. Кириллов, В. В. Теоретические основы теплотехники. Тепломассообмен Текст учебное пособие для самостоят. работы студентов В. В. Кириллов; Юж.-Урал. гос. ун-т, Каф. Пром. теплоэнергетика; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008. 71, [1] с.
- 2. Токовой, О. К. Тепломассообмен : учеб. пособие для студентов физ.-металлург. фак. / О. К. Токовой . Челябинск: Издательский Центр ЮУрГУ, 2012. 47] с.

Электронная учебно-методическая документация

№	Вил	Наименование ресурса в электронной форме	Библиографическое описание
1	ΛΟΝΙΟ ΡΕΡΟΠΕΡΙΙΙΟΙΙ	каталог ЮУрГУ	Токовой, О. К. Тепломассообмен: учеб. пособие для студентов физметаллург. фак. / О. К. Токовой Челябинск: Издательский Центр ЮУрГУ, 2012 47 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000497229
12.	дополнительная	каталог	Елисеев, Е.И. Теплотехника: тексты лекций / Е.И. Елисеев Челябинск: Издательский центр ЮУрГУ, 2010 35 с. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000468634
3	литература	библиотечная система издательства	Дерюгин, В. В. Тепломассообмен: учебное пособие для вузов / В. В. Дерюгин, В. Ф. Васильев, В. М. Уляшева. — 5-е изд., стер. — Санкт-Петербург: Лань, 2022. — 240 с. https://e.lanbook.com/book/233282. — Режим доступа: для авториз. пользователей.
4	Основная	Электронный каталог ЮУрГУ	Токовой, О. К. Основы тепломассообмена для бакалавров [Текст] учеб. пособие по направлению 22.00.00 "Технологии материалов" О. К. Токовой; ЮжУрал. гос. ун-т, Каф. Материаловедение и физико-химия материалов; ЮУрГУ Челябинск: Издательский Центр ЮУрГУ, 2017 195, [1] с. ил. электрон. версия http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000555935
5	дополнительная литература	излательства	Горбачев, М. В. Тепломассообмен: учебное пособие / М. В. Горбачев. — Новосибирск: НГТУ, 2015. — 443 с https://e.lanbook.com/book/118074. — Режим доступа: для авториз. пользователей.

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. ФГАОУ ВО "ЮУрГУ (НИУ)"-Портал "Электронный ЮУрГУ" (https://edu.susu.ru)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий № Осн	овное оборудование, стенды, макеты, компьютерная техника,
-------------------	---

	ауд.	предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	408 (1)	Компьютер, проектор, интерактивная доска
Практические занятия и семинары	314 (1)	Компьютер, проектор
Самостоятельная работа студента	101 (3д)	Компьютеры с доступом в локальную сеть университета