ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ Заведующий кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (ОУРГУ) ОУРГУ ОЖНО УКВОЛЬКОВ О В ПАДЕЛЬЦЕ ПЭП КОМУ ВЫЗВИ: Шпраев В. И. Тользователь: shrinevi Тава подписания: 28 од 2025

В. И. Ширяев

РАБОЧАЯ ПРОГРАММА практики

Практика Производственная практика (ориентированная, цифровая) для специальности 24.05.06 Системы управления летательными аппаратами Уровень Специалитет форма обучения очная кафедра-разработчик Системы автоматического управления

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 24.05.06 Системы управления летательными аппаратами, утверждённым приказом Минобрнауки от 04.08.2020 № 874

Разработчик программы, старший преподаватель

В. П. Щербаков

1. Общая характеристика

Вид практики

Производственная

Тип практики

ориентированная, цифровая

Форма проведения

Дискретно по видам практик

Цель практики

Получение получение навыков и практического опыта составления и анализа требований к аппаратной и программной части цифровых управляющих систем, применения программных средств при проектировании цифровых управляющих систем.

Задачи практики

- 1. Закрепление теоретических и практических знаний, полученных при изучении общепрофессиональных и специальных дисциплин.
- 2. Ознакомление с современными электронными устройствами цифровых управляющих систем.
- 3. Получение умений применять программные средства при проектировании цифровых управляющих систем.
- 4. Сбор материалов для курсовых проектов и работ, сбор и анализ исходных данных для расчета и проектирования устройств и систем управления.

Краткое содержание практики

Производственная практика проводится в научно-исследовательских, специализированных и учебных лабораториях университета. Обучающийся обязан полностью и в заданный срок выполнять задания, предусмотренные программой практики. Конкретное содержание практики определяется индивидуальным заданием, выдаваемым руководителем практики.

По окончании практики студент представляет отчет, в котором отражаются следующие положения: современные электронные устройства цифровых управляющих систем, программные средства при проектировании цифровых управляющих систем, методики и подходы составления и анализа требований к аппаратной и программной части цифровых управляющих систем.

В отчете должны быть четко выделены поставленные задачи и методы их решения, представлены необходимые схемы, таблицы, эскизы, фотографии. Обучающийся представляет подготовленный отчет руководителю практики и защищает его на кафедре.

2. Компетенции обучающегося, формируемые в результате прохождения практики

Планируемые результаты освоения ОП Планируемые результаты обучения і				
ВО	прохождении практики			
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования для решения инженерных задач профессиональной деятельности	Знает:виды объектов профессиональной деятельности и методы их исследования Умеет:применять программные средства для решения исследовательских задач Имеет практический опыт:исследования объектов профессиональной деятельности с использованием математических			
ОПК-3 Способен разрабатывать нормативно-техническую документацию, связанную с профессиональной деятельностью	моделей Знает:методы сбора, систематизации и анализа научно-технической информации в области систем управления летательными аппаратами Умеет:подготавливать и оформлять научно-технические отчеты Имеет практический опыт:сбора, систематизации, анализа и оформления научно-технической информации в форме отчета в соответствии с действующими стандартами			

3. Место практики в структуре ОП ВО

Перечень предшествующих дисциплин	, Перечень последующих дисциплин,
видов работ	видов работ
1.О.16 Начертательная геометрия и	
инженерная графика	
1.О.10 Специальные главы физики	
1.О.20 Теория вероятностей и	1.О.38 Гидравлика и основы
математическая статистика	гидропневмосистем
1.О.09 Специальные главы математики	1.О.34 Численные методы в инженерных
1.О.21 Теоретические основы	расчетах
электротехники	1.О.24 Теория автоматического
1.О.18 Техническая механика	управления
1.О.17 Теоретическая механика	1.О.11 Метрология, стандартизация и
1.О.07.01 Алгебра и геометрия	сертификация
1.О.33 Математические основы теории	1.О.25 Технология приборостроения
управления	1.О.31 Механика полета
1.О.07.02 Математический анализ	
1.О.15 Химия	
1.О.08 Физика	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым для

прохождения данной практики и приобретенным в результате освоения

предшествующих дисциплин:

Дисциплина	Требования
	Знает: основные математические положения,
	законы, основные формулы и методы решения задач разделов дисциплин "Ряды", "Уравнения
	математической физики", "Теория функций комплексного переменного", "Преобразование Лапласа": Степенные ряды; ряды Тейлора и
	Маклорена; разложение функций в степенной ряд; тригонометрические ряды Фурье; канонические
	формы и классификация линейных дифференциальных уравнений 2-го порядка;
	решение задачи о колебаниях струны методом
	Фурье; решение уравнения теплопроводности
	методом Фурье; решение краевых задач для
	уравнения Лапласа в круге и полуплоскости;
	элементарные функции комплексной переменной;
	дифференцирование функций комплексной
	переменной; условия Коши-Римана; интеграл от
	функции комплексной переменной; теорема Коши;
	интегральная формула Коши; ряды Тейлора и
1.О.09 Специальные главы	Лорана; изолированные особые точки функции;
математики	вычеты и их применение к вычислению
	интегралов; определение функции-оригинала и её
	изображения по Лапласу; таблицу стандартных изображений; обращение преобразования Лапласа;
	приложения операционного исчисления к
	решению линейных дифференциальных
	уравнений и их систем
	Умеет: профессионально решать классические
	(типовые) задачи по данным дисциплинам,
	применять математические методы для решения
	типовых профессиональных
	задач, ориентироваться в справочной
	математической литературе, приобретать новые
	математические знания, используя современные
	образовательныеи информационные технологии
	Имеет практический опыт: решения задач
	математической физики; методами теории
	функций комплексного переменного и
	операционного исчисления, которые
	необходимыдля формирования соответствующих
	компетенций
	Знает: методы механического и математического
1.О.18 Техническая механика	моделирования типовых элементов машин и
	конструкций; общие принципы и методы
	инженерных расчетов типовых элементов машин и

	конструкций на прочность, основные понятия и определения, теоремы и законы механики, область их применения для основных применяемых при изучении механики моделей, основные принципы сопротивления материалов, классификацию видов нагружения стержня, механические характеристики материалов Умеет: выполнять расчеты на прочность типовых элементов, моделируемых с помощью стержня при простых видах нагружения, разрабатывать расчетные модели типовых элементов конструкций Имеет практический опыт: навыками решения практических задач расчета на прочность типовых элементов машин и конструкций, разработки расчетных моделей типовых элементов
	конструкций
1.О.08 Физика	Знает: законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач; историю и логику развития физики и основных ее открытий Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой техники и новых технологий; выделять физическое содержание в прикладных задачах, строить модели с использованием физических законов Имеет практический опыт: владения методами решения физических задач, теоретического и экспериментального исследования; использования базовых знаний в области физики для интерпретации результатов в сфере профессиональной деятельности
1.О.15 Химия	Знает: о строении вещества и природе химической связи; о периодичности свойств элементов и их соединений; об основных химических системах и процессах; о реакционной способности веществ, обусловленной термодинамическими и кинетическими параметрами систем; о фундаментальных константах, о методах химической идентификации и определения веществ; об электрохимических процессах и их применении на практике; о свойствах важнейших материалов, в том числе, металлов и сплавов

Умеет: использовать основные понятия химии; использовать периодический закон для характеристики строения и свойств элементов и их соединений; использовать законы, управляющие химическими системами и процессами в них, в том числе, для расчета составов и приготовления реакционных смесей; определять физико-химические свойства материалов; обрабатывать результаты эксперимента; осуществлять на базе требуемых физико-химических характеристик выбор материала
Имеет практический опыт: владения навыками по

Имеет практический опыт: владения навыками по составлению уравнений химических реакций; обращению с реактивами, приборами и оборудованием и использовать их для проведения экспериментов; соблюдению техники безопасности; по обработке результатов опыта и оформлению отчетов

Знает: теорию матричного исчисления, линейные пространства и линейные преобразования, евклидовы пространства и квадратичные формы, алгоритмы построения функций матриц и их свойства; теорему существования и единственности решения для нормальной системы дифференциальных уравнений, методы решения систем линейных дифференциальных уравнений; теорему об управляемости объекта, методики составления дифференциальных уравнений подвижных объектов, метод пространства состояний в теории систем, понятие устойчивости движения, методику исследования устойчивости систем по первому приближению и вторым методом Ляпунова; критерии управляемости и наблюдаемости линейных систем, теорему о необходимых условиях оптимальности; принцип максимума Понтрягина

1.О.33 Математические основы теории управления

Умеет: выполнять различные операции с множествами (арифметические операции, нахождение расстояния между множествами, нахождение образа множества); находить опорные функции различных множеств и их пересечений, находить положения равновесия, определять их характер и изображать фазовые траектории линеаризованных систем в окрестности положений равновесия для автономных систем; исследовать устойчивость положений равновесия с помощью системы первого приближения и вторым методом Ляпунова

	III. (20 III III III III III III III III III I
	Имеет практический опыт: применения методик
	исследования движения управляемых объектов,
	применения принципа максимума Понтрягина,
	применения методики синтеза оптимального
	управления для линейной задачи быстродействия
	Знает: основные математические положения,
	законы, основные формулы и методы решения
	задач разделов дисциплин математического
	анализа
	Умеет: самостоятельно работать с учебной,
	справочной и учебно-методической литературой;
	доказывать теоремы, вычислять определенные
	интегралы по фигуре; характеризовать векторные
	поля; находить циркуляцию и поток векторного
1.О.07.02 Математический анализ	поля; применять интегралы к решению простых
	прикладных задач; составлять математические
	модели простых задач реальных процессов и
	проводить их анализ
	Имеет практический опыт: владения навыками
	работы с учебной и учебно-методической
	литературой; навыками употребления
	математической символики для выражения
	количественных и качественных отношений
	объектов; навыками символьных преобразований
	математических выражений
	Знает: методы математического описания
	физических процессов для решения задач
	профессиональной деятельности
	Умеет: выделять физические процессы в
1.О.10 Специальные главы	состоянии объекта исследования и применять
физики	методы их моделирования для решения задач
	профессиональной деятельности
	Имеет практический опыт: применения законов
	физики для решения задач профессиональной
	деятельности
	Знает: основные математические положения,
	законы, основные формулы и методы решения
	задач разделов дисциплины "Теория вероятностей
	и математической статистики": комбинаторику;
	теоремы сложения и умножения вероятностей;
1.О.20 Теория вероятностей и	формулу полной вероятности и формула Байеса;
	формула Бернулли; локальную и интегральную
математическая статистика	теоремы Муавра-Лапласа; формулу Пуассона;
	числовые характеристики дискретных случайных
	величин и их свойства; функцию распределения;
	биномиальный, геометрический и
	гипергеометрический законы распределения
	дискретных случайных величин; непрерывные

случайные величины; функции распределения и плотности распределения; равномерное и показательное распределения; нормальное распределение; центральную предельную теорему; основные понятия статистики; оценки теоретических параметров; доверительный интервал; проверка статистических гипотез Умеет: профессионально решать классические (типовые) задачи по данной дисциплине, применять математические методы для решения типовых профессиональных задач, ориентироваться в справочной математической литературе, приобретать новые математические знания, используя современные образовательные и информационные технологии Имеет практический опыт: владения методами теории вероятностей и математической статистики, необходимые для формирования данной компетенции Внает: основы построения чертежа, закономерности получения изображений; правила выполнения чертежей деталей, сборочных единиц и элементов конструкций; требования стандартов Единой системы конструкторской документации (ЕСКД) и Единой системы технической документации (ЕСТД) к оформлению и составлению чертежей, методы решения инженерно-геометрических задач на чертеже Умеет: решать геометрические задачи посредством чертежа; анализировать форму предметов по их чертежам, строить и читать чертежи; решать 1.О.16 Начертательная геометрия и инженерная графика инженерно-геометрические задачи на чертеже; применять нормативные документы и государственные стандарты, необходимые для оформления чертежей и другой конструкторскотехнологической документации; уметь применять ручные (карандаш и бумага) для построения чертежей и изучения пространственных свойств геометрических объектов Имеет практический опыт: построения и чтения чертежа; выполнения проекционных чертежей и оформления конструкторской документации в соответствии с ЕСКД Знает: основные методы расчетов электрических цепей при стационарных режимах постоянного 1.О.21 Теоретические основы тока, синусоидального тока, при периодических электротехники несинусоидальных токах; критерии оптимальных условий передачи мощностей и энергии между

различными частями электрической цепи; способы исследования нестационарных режимов электрических цепей и способы оптимизации их с точки зрения аварийных значений параметров состояния, возможности применения электротехнических устройств в большинстве промышленных производственных процессов в качестве наиболее гибких из известных способов поставки энергоносителя к технологическому процессу; допустимые пределы поставок электроэнергии при ограничении по пробивному напряжению и по напряженности магнитного поля; возможности преобразования энергии электромагнитного поля в высокотемпературные поля, в механическую энергию, в электрохимические процессы Умеет: выполнять расчет параметров состояния электрической цепи в стационарном режиме постоянного тока, синусоидального тока и при периодических несинусоидальных воздействиях; анализировать и получать количественные характеристики нестационарных режимов электрических цепей, их возможные аварийные характеристики; уклонять электрическую цепь от крайних и экстремальных параметров состояния, применять теоретические знания свойств электромагнитного поля и электрических цепей в проектировании сложных промышленных электротехнических устройств; оценивать уровень реализации практического электротехнического устройства и возможности его совершенствования на основе самых современных представлений о способах использования электроэнергии Имеет практический опыт: применения методов дискуссионного отстаивания своих вариантов решения технической задачи в электротехнике; обоснования технической и экономической целесообразности собственных технических решений, применения методов теоретического анализа сложных электротехнических устройств и цепей; приемов оптимизации имеющихся практических устройств электротехники: приемов конкурентного сравнения различных вариантов использования электроэнергии и приемов количественного представления всех свойств проектируемых электротехнических устройств

1.О.17 Теоретическая механика

Знает: постановки классических задач теоретической механики; основные понятия и

	¬
	аксиомы законы, принципы теоретической
	механики фундаментальные понятия кинематики и
	кинетики, основные законы равновесия и
	движения материальных объектов
	Умеет: оценивать корректность поставленной
	задачи; применять основные законы
	теоретической механики
	Имеет практический опыт: владения методами
	математического моделирования статического,
	кинематического и динамического состояния
	механических систем
	Знает: основные термины и понятия линейной
	алгебры и аналитической геометрии; наиболее
	важные приложения линейной алгебры и
	аналитической геометрии в различных областях
	других естественно-научных и профессиональных
	дисциплин
	Умеет: производить основные операции над
	матрицами, вычислять определители, исследовать
1 0 07 01 4	и решать системы линейных уравнений, проводить
1.О.07.01 Алгебра и геометрия	основные операции над векторами в координатах,
	применять формулы для вычисления расстояний,
	углов, площадей и объемов различных фигур,
	составлять уравнения фигур 1-го и 2-го порядка на
	плоскости и в пространстве
	Имеет практический опыт: использования
	основных положений линейной алгебры и
	аналитической геометрии в профессиональной
	деятельности
	Ment en miliou III

4. Объём практики

Общая трудоемкость практики составляет зачетных единиц 3, часов 108, недель 16.

5. Струкрура и содержание практики

№ раздела (этапа)	Наименование или краткое содержание вида работ на практике	Кол-во часов
1	Выполнение индивидуального задания, включающего описание современных электронных устройств цифровых управляющих систем, применение программных средств при проектировании цифровых управляющих систем, составление и анализ требований к аппаратной и программной части цифровых управляющих систем. Обучающимся в соответствии со стандартами и требованиями составляется отчет, содержащий обоснованные выводы об основных результатах, полученных в ходе выполнения индивидуального задания.	108

6. Формы отчетности по практике

По окончанию практики, студент предоставляет на кафедру пакет документов, который включает в себя:

- дневник прохождения практики, включая индивидуальное задание и характеристику работы практиканта организацией;
- отчет о прохождении практики.

Формы документов утверждены распоряжением заведующего кафедрой от 01.09.2016 №1.

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по практике

Вид промежуточной аттестации – дифференцированный зачет. Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

7.1. Контрольные мероприятия (КМ)

№ KM	[Семестр	Вид контроля	Название контрольного мероприятия	Bec	Макс.балл	Порядок начисления баллов	Учитывается в ПА
1	4	Текущий контроль	Выполнение индивидуального задания	1	5		дифференцированный зачет

	1	1			1	1	1
						управляющих	
						систем; 1 балл за	
						составление	
						требований к	
						аппаратной и	
						программной	
						части цифровых	
						управляющих	
						систем; 1 балл за	
						анализ требований	
						к аппаратной и	
						программной	
						части цифровых	
						управляющих	
						систем; 1 балл за	
						оформление	
						работы согласно	
						требованиям и	
						стандартам.	
						Защита отчета по	
						практике	
						проводится в	
						устной форме.	
						Обучающемуся	
						задается 3 вопроса	,
						ПО	
						представленному	
						отчету,	
						позволяющих	
						оценить	
						сформированность	
						компетенций. На	
						ответы отводится	
						15 минут. Ответы	
						на вопросы	
						оцениваются по	
						пятибалльной	1.1
2	4	Промежуточная	Защита отчета	_	5	системе:	дифференцированный
		аттестация	,			Правильные	зачет
						ответы на вопросы	
						оцениваются в 5	
						баллов.	
						Правильные	
						ответы на вопросы	
						c	
						незначительными	
						неточностями или	
						упущениями	
						соответствуют 4 баллам.	
						Правильные	
						ответы с	
						незначительными	
						ошибками	
						оцениваются в 3	
1				I		балла.	

			Правильные	
			ответы с	
			ошибками	
			соответствуют 2	
			баллам.	
			Правильные	
			ответы с грубыми	
			ошибками	
			оцениваются в 1	
			балл.	
			Неправильные	
			ответы на вопросы	
			соответствуют 0	
			баллам.	

7.2. Процедура проведения, критерии оценивания

На дифференцированном зачете происходит оценивание учебной деятельности обучающихся по практике на основе полученных оценок за контрольно-рейтинговые мероприятия текущего контроля и промежуточной аттестации. Критерии оценивания. Отлично: величина рейтинга обучающегося по производственной практике 85...100%. Хорошо: величина рейтинга обучающегося по производственной практике 75...84%. Удовлетворительно: величина рейтинга обучающегося по производственной практике 60...74 %. Неудовлетворительно: величина рейтинга обучающегося по производственной практике 0...59 %.

7.3. Оценочные материалы

Компетенции	Результаты обучения			
	1 00)101101		$\frac{M}{2}$	
(C)	Знает: виды объектов профессиональной деятельности и методы их исследования		+	
ОПК-1	Умеет: применять программные средства для решения исследовательских задач	+	+	
IC 11 K _	Имеет практический опыт: исследования объектов профессиональной деятельности с использованием математических моделей	+	+	
IC 11 1 K = 4	Знает: методы сбора, систематизации и анализа научно-технической информации в области систем управления летательными аппаратами	+	+	
ОПК-3	Умеет: подготавливать и оформлять научно-технические отчеты	+	+	
ОПК-3	Имеет практический опыт: сбора, систематизации, анализа и оформления научно-технической информации в форме отчета в соответствии с действующими стандартами	+	+	

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

8. Учебно-методическое и информационное обеспечение практики

Печатная учебно-методическая документация

а) основная литература: Не предусмотрена

б) дополнительная литература: Не предусмотрена

из них методические указания для самостоятельной работы студента:

1. Методические указания по прохождению Методические указания по прохождению практики "Производственная практика (ориентированная, цифровая)" (для СРС) (в локальной сети кафедры)

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	ЭБС издательства Лань	Микрин, Е. А. Введение в механику полета и управление космическими аппаратами : учебник / Е. А. Микрин, Ф. В. Звягин. — Москва : МГТУ им. Н.Э. Баумана, 2020. — 566 с. https://e.lanbook.com/book/172728
2	Основная литература	ЭБС издательства Лань	Плохотников, К. Э. Методы разработки математических моделей и вычислительный эксперимент на базе пакета МАТLAB. Курс лекций: учебное пособие / К. Э. Плохотников. — Москва: СОЛОН-Пресс, 2017. — 628 с. https://e.lanbook.com/book/92996
15	Основная литература	ЭБС издательства Лань	Боровский, А. С. Программирование микроконтроллера Arduino в информационно-управляющих системах : учебное пособие / А. С. Боровский, М. Ю. Шрейдер. — Оренбург : ОГУ, 2017. — 113 с. https://e.lanbook.com/book/110615
4	Основная литература	ЭБС издательства Лань	Ощепков, А. Ю. Системы автоматического управления: теория, применение, моделирование в МАТLАВ / А. Ю. Ощепков. — 5-е изд., стер. — Санкт-Петербург: Лань, 2023. — 208 с. https://e.lanbook.com/book/341180
5	Дополнительная литература		Современные системы управления движением космических аппаратов связи, навигации и геодезии: учебное пособие: в 2 книгах / В. А. Раевский, Н. А. Тестоедов, М. В. Лукьяненко, Е. Н. Якимов. — Красноярск: СибГУ им. академика М. Ф. Решетнёва, 2020 — Книга 1: Системы управления движением космических аппаратов на геостационарной орбите. Ч. 2 — 2020. — 516 с. https://e.lanbook.com/book/165915
6	Дополнительная литература	ЭБС издательства Лань	Микрин, Е. А. Бортовые комплексы управления космических аппаратов: учебное пособие / Е. А. Микрин. — Москва: МГТУ им. Баумана, 2014. — 245 с. https://e.lanbook.com/book/106274

9. Информационные технологии, используемые при проведении практики

Перечень используемого программного обеспечения:

- 1. Math Works-MATLAB, Simulink R2014b(бессрочно)
- 2. Arduino LLC-Arduino IDE(бессрочно)

Перечень используемых информационных справочных систем: Нет

10. Материально-техническое обеспечение практики

Место прохождения практики	Адрес места прохождения	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, обеспечивающие прохождение практики
Учебная лаборатория "Системы управления летательными аппаратами"	454080, Челябинск, Ленина, 76	ЭВМ с системой "Персональный виртуальный компьютер" (ЮУрГУ) для доступа к MATLAB и программным обеспечением Arduino IDE для программирования микропроцессорных устройств
правления и	454080, Челябинск, пр.им.Ленина, 76	ЭВМ с системой "Персональный виртуальный компьютер" (ЮУрГУ) для доступа к MATLAB и программным обеспечением Arduino IDE для программирования микропроцессорных устройств