ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранитех в системе электронного документоборога ПОУБГУ Пожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдрин А. В. Польователь, суфгам Дата подписания: 15.07.2025

А. В. Выдрин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.05 Искусственный интеллект при контроле и прогнозировании технических параметров прокатной продукции для направления 22.04.02 Металлургия уровень Магистратура магистерская программа Искусственный интеллект в металлургии форма обучения очная кафедра-разработчик Процессы и машины обработки металлов давлением

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 22.04.02 Металлургия, утверждённым приказом Минобрнауки от 24.04.2018 № 308

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, к.техн.н., доцент

А. В. Выдрин

Эаектронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского госудиретвенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Пользователь: shrickov. университета (Дата подписания: 15 07 2025)

В. В. Широков

1. Цели и задачи дисциплины

Целью преподавания дисциплины является изучение принципов построения прогнозных моделей, связывающих качество и уровень свойств готовой прокатной продукции с химическим составом сплавов и технологическими параметрами их обработки на этапе непрерывной разливки и прокатки. Задачами данного курса является: - изучение возможностей применения искусственного интеллекта для составления прогнозных моделей в прокатном производстве; - приобретение теоретических и практических знаний в части использования данных, полученных в процессе непрерывной разливки и прокатке, для прогнозирования уровня свойств и качества готовой прокатной продукции; - приобретение навыков проектирования и разработки систем прогнозирования и контроля качества и свойств прокатной продукции, а также совершенствования технологии разливки и прокатки с использованием искусственного интеллекта.

Краткое содержание дисциплины

В дисциплине «Искусственный интеллект при контроле и прогнозировании технических параметров прокатной продукции» изучаются методы обработки производственных данных и управления качеством в металлургии; интеллектуальные алгоритмы для прогнозирования качества непрерывнолитой заготовки, прокатной продукции; методология разработки технологий разливки и прокатки новых видов продукции, базирующаяся на интеллектуальных алгоритмах обработки производственного опыта и статистических данных.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: Возможности современных
	инструментальных средств и систем
	программирования для решения задач
ПК-9 Способен руководить проектами по	машинного обучения;
созданию систем искусственного интеллекта с	Умеет: Проводить сравнительный анализ и
применением новых методов и алгоритмов	осуществлять выбор инструментальных средств
машинного обучения со стороны заказчика	для решения задач машинного обучения;
Mamminoto doy felim eo etopolisi sakas mka	Имеет практический опыт: участия в проектах по
	изучению опыта использования искусственного
	интеллекта с применением новых методов и
	алгоритмов машинного обучения в металлургии
	Знает: Функциональность современных
	инструментальных средств и систем
	программирования в области создания моделей
ПК-10 Способен руководить проектами со	искусственных нейронных сетей, в том числе
стороны заказчика по созданию, поддержке и	сетей-трансформеров и сетей с автоматически
использованию системы искусственного	генерируемой архитектурой
интеллекта на основе нейросетевых моделей и	Умеет: проводить оценку и выбор моделей
методов	искусственных нейронных сетей и
	инструментальных средств для решения задач
	машинного обучения
	Имеет практический опыт: участия в проектах по

изучению опыта использования искусственного
интеллекта с применением нейросетевых
моделей и методов в металлургии

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
HeT	Производственная практика (преддипломная) (4 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к защите практических работ	30	30
Подготовка к зачету	5,75	5.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No॒	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	• • • • • • • • • • • • • • • • • • • •	Всего	Л	ПЗ	ЛР
	Методы обработки производственных данных для управления качеством в металлургии	8	4	4	0
	Интеллектуальные алгоритмы как инструмент прогнозирования качества непрерывнолитой заготовки	8	4	4	0
	Интеллектуальные алгоритмы как инструмент прогнозирования качества непрерывнолитой заготовки	8	4	4	0

4	Интеллектуальные алгоритмы как инструмент для разработки технологий разливки и прокатки новых видов продукции	8	4	4	0	1
---	---	---	---	---	---	---

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		нализ особенностей управления качеством продукции металлургического роизводства. Существующие подходы к контролю процессов	
2		Выявление взаимосвязей между технологическими факторами и показателями качества продукции	2
3	/	Статистический контроль дефектов непрерывнолитой заготовки на основе методов машинного обучения и анализа данных	2
4	2	Прогнозное моделирование тепловых процессов при непрерывной разливке металлов	2
5	3	Применение нейронных сетей для автоматизации технологических процессов в прокатном производстве. Искусственный интеллект для оптимизации производства и повышения качества готовой продукции	2
6	•	Машинное зрение при распознавании дефектов поверхности прокатной продукции	2
7, 8	4	Применение нейросетевого моделирования, машинного обучения при освоении режимов разливки и прокатки новых марок сплавов и типоразмеров готовой продукции	4

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1, 2		Применение машинного зрения при распознавании дефектов поверхности прокатной продукции	4
3, 4		Определение взаимосвязей между технологическими факторами и показателями качества продукции	4
5, 6	· •	Нейросетевое моделирование при для оптимизации производства и повышения качества готовой продукции	4
7, 8		Нейросетевое моделирование при разработке режимов разливки и прокатки новых марок сплавов и типоразмеров готовой продукции	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Подготовка к защите практических работ	https://edu.susu.ru/my/	3	30			
	1.Вакуленко, С. А. Практический курс по нейронным сетям: учебное пособие / С.	3	5,75			

.
А. Вакуленко, А. А. Жихарева. — Санкт-
Петербург : НИУ ИТМО, 2018. — 71 с. —
Текст : электронный // Лань : электронно-
библиотечная система. — URL:
https://e.lanbook.com/book/136500 (дата
обращения: 30.09.2024). — Режим
доступа: для авториз. пользователей.
2. Ростовцев, В. С. Искусственные
нейронные сети: учебник для вузов / В.
С. Ростовцев. — 2-е изд., стер. — Санкт-
Петербург : Лань, 2021. — 216 с. — ISBN
978-5-8114-7462-2. — Текст :
электронный // Лань : электронно-
библиотечная система. — URL:
https://e.lanbook.com/book/160142 (дата
обращения: 30.09.2024). — Режим
доступа: для авториз. пользователей.

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	3	Текущий контроль	Практическая работа № 1. Применение машинного зрения при распознавании дефектов поверхности прокатной продукции	0,25	5	Защита практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльнорейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179). Общий балл при оценке складывается из следующих показателей: приведены методики оценки технологических параметров — 1 балл; выводы логичны и обоснованы — 1 балл; оформление работы соответствует требованиям — 1 балл; правильный ответ на один вопрос — 1 балл. Максимальное количество баллов — 5.	

2	3	Текущий контроль	Практическая работа № 2. Определение взаимосвязей между технологическими факторами и показателями качества продукции	0,25	5	ректора от 24.05.2019 г. № 179). Общий балл при оценке складывается из следующих показателей: приведены методики оценки технологических параметров – 1 балл; выводы логичны и обоснованы – 1 балл; оформление работы соответствует требованиям – 1 балл; правильный ответ на один вопрос – 1 балл. Максимальное количество баллов – 5.	зачет
3	3	Текущий контроль	Практическая работа № 3. Нейросетевое моделирование при для оптимизации производства и повышения качества готовой продукции	0,25	5	Защита практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльнорейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179). Общий балл при оценке складывается из следующих показателей: приведены методики оценки технологических параметров — 1 балл; выводы логичны и обоснованы — 1 балл; оформление работы соответствует требованиям — 1 балл; правильный ответ на один вопрос — 1 балл. Максимальное количество баллов — 5.	
4	3	Текущий контроль	Практическая работа № 4. Нейросетевое моделирование при разработке режимов разливки и прокатки новых марок сплавов и типоразмеров готовой продукции	0,25	5	Защита практической работы осуществляется индивидуально. Студентом предоставляется оформленный отчет. Оценивается качество оформления, правильность выводов и ответы на вопросы (задаются 2 вопроса). При оценивании результатов мероприятия используется балльнорейтинговая система оценивания	зачет

					результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179). Общий балл при оценке складывается из следующих показателей: приведены методики оценки технологических параметров – 1 балл; выводы логичны и обоснованы – 1 балл; оформление работы соответствует требованиям – 1 балл; правильный ответ на один вопрос – 1 балл. Максимальное количество баллов – 5.	
5	3	Проме- жуточная аттестация	Зачет	1	К зачету допускаются студенты выполнившие все практические работы. На зачете студент отвечает на 3 устных вопроса. За правильный исчерпывающий ответ на вопрос начисляется 5 баллов. Зачтено: рейтинг обучающегося за мероприятие больше или равен 60 %. Не зачтено: рейтинг обучающегося за мероприятие менее 60 %	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания	
зачет	Hannengered Juannob Rantehu, bentaht upanginerued sa	В соответствии с пп. 2.5, 2.6 Положения	

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения) 1	<u></u> 2	KN 3 4	Л
ПК-9	Знает: Возможности современных инструментальных средств и систем программирования для решения задач машинного обучения;		+		+
ПК-9	Умеет: Проводить сравнительный анализ и осуществлять выбор инструментальных средств для решения задач машинного обучения;				+
ПК-9	Имеет практический опыт: участия в проектах по изучению опыта использования искусственного интеллекта с применением новых методов и алгоритмов машинного обучения в металлургии		+-	+	+
ПК-10	Знает: Функциональность современных инструментальных средств и систем программирования в области создания моделей искусственных нейронных сетей, в том числе сетей-трансформеров и сетей с автоматически генерируемой архитектурой			+	-+
ПК-10	Умеет: проводить оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения задач машинного обучения	+		+	-+
ПК-10	Имеет практический опыт: участия в проектах по изучению опыта	+			+

использования искусственного интеллекта с применением нейросетевых			
моделей и методов в металлургии			

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Агеев Л. М. Теория процессов прокатки и волочения : метод. указания к лаб. работам / Л. М. Агеев, А. В. Выдрин ; Челяб. гос. техн. ун-т, Каф. Обработка металлов давлением (прокатка) ; ЮУрГУ. Челябинск : Издательство ЧГТУ, 1995. 34, [1] с. : ил.
- 2. Амосов П. Н. Основные технологические операции прокатного производства: учеб. пособие / П. Н. Амосов; Челяб. политехн. ин-т им. Ленинского комсомола, Каф. Обработка металлов давлением (прокатка); ЮУрГУ. Челябинск: Издательство ЧПИ, 1987. 76 с.: ил.. URL: http://www.lib.susu.ac.ru/ftd?base=SUSU METHOD&key=000004045
- 3. Агеев Л. М. Определение динамических нагрузок в металлургических машинах : Учеб. пособие для самостоят. работы и практ. занятий / Л. М. Агеев; Юж.-Урал. гос. ун-т, Каф. Прокатка; ЮУрГУ. Челябинск : Издательство ЮУрГУ, 2004. 43, [1] с.
- 4. Агеев Л. М. Расчет на ЭВМ кинематических и энергосиловых параметров процесса продольной прокатки : метод. указания к практ. занятиям по курсу "Теория прокатки" / Л. М. Агеев, А. В. Выдрин ; Челяб. гос. техн. унт, Каф. Обработка металлов давлением ; ЮУрГУ. Челябинск : Издательство ЧГТУ, 1995. 25, [2] с. : ил.
- 5. Выдрин А. В. Механика сплошных сред: конспект лекций / А. В. Выдрин; Юж.-Урал. гос. ун-т, Каф. Обработка металлов давлением; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2005. 60, [1] с.: ил.
- 6. Выдрин А. В. Алгоритмы решения задач механики сплошных сред методом линий скольжения: учеб. пособие для самостоят. работы студентов / А. В. Выдрин; Юж.-Урал. гос. ун-т, Каф. Обработка металлов давлением; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2002. 24 с.: ил.
- 7. Дубинский Ф. С. Планирование и обработка эксперимента в ОМД : конспект лекций / Ф. С. Дубинский, А. В. Выдрин, П. А. Мальцев ; Юж.-Урал. гос. ун-т, Каф. Обраб. металлов давлением ; ЮУрГУ. Челябинск : Издательство ЮУрГУ, 2007. 43, [2] с. : ил.
- б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Искусственный интеллект при контроле и прогнозировании технических параметров прокатной продукции

2. Искусственный интеллект при контроле и прогнозировании технических параметров прокатной продукции

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Искусственный интеллект при контроле и прогнозировании технических параметров прокатной продукции

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. -Python(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -Информационные ресурсы ФГУ ФИПС(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Пекшии	337 (Л.к.)	Проектор, компьютер, доступ к сети Интернет
Практические занятия и семинары	339 (Л.к.)	Компьютерный класс, доступ к сети Интернет