ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Институт естественных и точных наук

Электронный документ, подписанный ПЭП, хранитея в системе засктроннию документоборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышлевая А. Повъователь: zamyshlaevasa [дела подписаны: 17.09.2021

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.09 Непрерывные модели для направления 01.04.02 Прикладная математика и информатика уровень Магистратура форма обучения очная кафедра-разработчик Математический анализ и методика преподавания математики

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.04.02 Прикладная математика и информатика, утверждённым приказом Минобрнауки от 10.01.2018 № 13

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, д.физ.-мат.н., доц., заведующий кафедрой

СОГЛАСОВАНО

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Южис-Ураньского госуларственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дильман В. Л. Польователь: dilman/d Пата подписания: 16 09 2021

электронный документ, подписанный ПЭП, хранится в системе электронного документоборого ПОУРГУ (ОЗВО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Дильман В. Л. Пользователь: dilmanvl [Дат подписания: 1609-2021]

В. Л. Дильман

В. Л. Дильман

Руководитель направления д.физ.-мат.н., проф.

Электронный документ, подписанный ПЭП, хранится в системе эмектронного документооборога (ОХВО) СТВЕДЕНИЯ О ВПАДЕЛЬЦЕ ПЭП Кому выдан: Замышкаева А. А. Пользователь: замузывансчав [для подписанных 17 09 2021]

А. А. Замышляева

1. Цели и задачи дисциплины

Целью освоения дисциплины "Непрерывные модели" является формирование системы знаний, умений и навыков построения и анализа непрерывных математических моделей. Задачи курса: изучения метода математического моделирования как средства исследования явлений и процессов природы и общества, построение непрерывных математических моделей на основе классических законов физики, биологии, социологии и др.; исследование их математическими методами; классификация математических моделей; анализ точности построенных моделей: обучение методам выбора оптимального набора характеристик изучаемых процессов и использования физических законов для формализации взаимосвязей этих характеристик.

Краткое содержание дисциплины

Сущность математического моделирования. Общие принципы построения математических моделей. Особенности исследования непрерывных математических моделей. Фундаментальные законы природы и вариационные принципы построения математических моделей. Обыкновенные дифференциальные уравнения и системы, уравнения в частных производных как математические модели натурных и социальных процессов. Линейные и нелинейные математические модели. Уточнение моделей. Некорректные математические модели, проверка корректности моделей.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ОПК-3 Способен разрабатывать математические модели и проводить их анализ при решении задач в области профессиональной деятельности	
ПК-2 Способен активно участвовать в построении и исследовании новых математических моделей в естественных науках и определять возможные области их применения	решаемых задач и проводить анализ их точности Знает: методологию разработки непрерывных математических моделей для решения научных и практических задач Умеет: разрабатывать математические модели решаемых задач и проводить анализ их точности

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
1.О.08 Дискретные и вероятностные модели,	
Производственная практика, научно-	Не предусмотрены
исследовательская работа (1 семестр)	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.08 Дискретные и вероятностные модели	Знает: основные принципы математического моделирования, инструментальные средства анализа дискретных математических моделей Умеет: строить и анализировать дискретные и вероятностные математические модели, соответствующие поставленной задаче Имеет практический опыт: построения и анализа дискретных и вероятностных математических моделей, соответствующих поставленной задаче
Производственная практика, научно- исследовательская работа (1 семестр)	Знает: Умеет: Имеет практический опыт: построения и анализа математических моделей при решении своих профессиональных задач

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 32,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
с применением дистанционных образовательных технологий	0	
Подготовка к зачету.	5,75	5.75
Подготовка к практическим занятиям.	8	8
Подготовка к контрольной работе	4	4
Подготовка доклада.	12	12
Подготовка презентации доклада.	6	6
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
раздела	-	Всего	Л	П3	ЛР	
1 1	Введение в математическое моделирование непрерывных процессов	6	4	2	0	
	Методы и средства построения непрерывных математических моделей.	18	8	10	0	
3	Особенности построения и исследования	8	4	4	0	

математических моделей.		

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основные понятия и общие принципы математического моделирования.	2
2	1	Чистая и прикладная математика. Особенности методов прикладной математики.	2
3	2	Фундаментальные законы природы как средство построения математических моделей. Закон сохранения энергии. Экспериментальное вычисление скорости пули. Закон сохранения массы. Распад радиоактивного вещества.	2
4	2	Фундаментальные законы природы как средство построения математических моделей. Закон сохранения количества движения. Принцип реактивного движения. Законы Ньютона и Гука. Движение шарика, соединенного с пружиной.	2
5	2	Применение аналогий при построении математических моделей. Вытекание жидкости из сосуда с малым отверстием. Модель Мальтуса. Вариационные принципы в построении математических моделей. Принцип преломления света Ферма. Траектория луча света.	2
6		Уравнения в частных производных в математических моделях. Волновое уравнение. Колебания упругих тел. Математические модели процессов теплопереноса. Уравнение теплопроводности.	2
7	3	Нелинейные математические модели. Уточнение математических моделей. Популяционные модели. Уточнение теории Мальтуса. Утонение модели вытекания жидкости из сосуда.	2
8	3	Некорректные математические модели. Проверка корректности математической модели использованием различных законов природы. Закон сохранения импульса. Экспериментальное вычисление скорости пули. Закон сохранения энергии. Движение шарика, соединенного с пружиной.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Уравнения и системы уравнений как математические модели. Простейшие уравнения: рекуррентные соотношения; чисто функциональные уравнения; дифференциальные уравнения 1-го порядка с разделяющимися переменными.	2
2	2	Примеры математического моделирования, приводящие к начальным задачам для обыкновенных дифференциальных уравнений. Решение прямых и обратных задач математического моделирования.	2
3	2	Продолжение. Примеры математического моделирования, приводящие к начальным задачам для обыкновенных дифференциальных уравнений. Решение прямых и обратных задач математического моделирования.	2
4	2	КР	2
5	2	Доклады студентов.	2
6	2	Доклады студентов.	2
7	3	Доклады студентов.	2
8	3	Зачетная работа.	2

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС							
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов				
Подготовка к зачету.	УММ в ЭВ 1.гл. 2-6. МП для СРС. 1. Гл. 1-6. 2. С. 3-45.	3	5,75				
Подготовка к практическим занятиям.	УММ в ЭВ 1.гл. 2-6. МП для СРС. 1. Гл. 1-6. 2. С. 3-45.	3	8				
Подготовка к контрольной работе	УММ в ЭВ 1.гл. 2,3. МП для СРС. 1. Гл. 2,3. 2. С. 3-45.	3	4				
Подготовка доклада.	УММ в ЭВ 1.гл. 2. МП для СРС. 1. Гл. 1- 6. 2. С. 3-45.	3	12				
Подготовка презентации доклада.	УММ в ЭВ 1.гл. 2. МП для СРС. 1. Гл. 1- 6. 2. С. 3-45.	3	6				

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия		Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	3	Текущий контроль	КР	0,36	36	КР контрольная работа "Обыкновенные дифференциальные уравнения как математические модели" проводится на практическом занятии в течение 2-х часов и содержит 3 задания. Каждое оценивается в 12 баллов: 5 баллов за правильное построение математической модели в виде начальной (граничной) задачи для дифференциального уравнения; 5 баллов за правильное решение уравнения; 2 балла за правильное нахождение параметров, входящих в решение. Максимальный балл за всю работу 36.	зачет
2	3	Текущий контроль	Текст доклада	0,3	30	Текст доклада на тему "Непрерывная математическая модель явления или процесса" объемом не менее 0,3 печатных листа готовится студентом 12-й неделе и направляется преподавателю на проверку. Он должен содержать: 1) описание изучаемого процесса или явления, физических законов и	зачет

						особенностей, связанных с данным процессом (из 7 баллов); 2) математическую модель, построенную на основе этих законов и свойств (из 7 баллов); 3) исследование модели в виде решения уравнения и нахождения параметров, входящих в решение (из 10 баллов); анализ свойств модели на основе полученных результатов (из 6 баллов). Максимальная оценка 30 баллов. Тему студент может выбрать самостоятельно или воспользоваться указанной преподавателем литературой.	
3	3	Текущий контроль	Презентация доклада.	0,24	24	Студент готовит презентацию доклада и делает на практическом занятии доклад на 10-15 мин. Затем отвечает на вопросы преподавателя и студентов. Оценка складывается из оценки за презентацию (из 12 баллов), изложения доклада (из 6 баллов) и ответов на вопросы (из 6 баллов). Максимальная оценка 24 балла. Презентация должна содержать основные положения доклада: 1) описание изучаемого процесса или явления, физических законов и особенностей, связанных с данным процессом (из 3 баллов); 2) математическую модель, построенную на основе этих законов и свойств (из 3 баллов); 3) исследование модели в виде решения уравнения и нахождения параметров, входящих в решение (из 3 баллов); анализ свойств модели на основе полученных результатов (из 3 баллов).	зачет
4	3	Проме- жуточная аттестация	Зачетная работа	1	40	На зачетной работе студент решает задачу (из 20 баллов) и отвечает на 2 теоретических вопроса (каждый из 10 баллов). Работа длится 2 академических часа. Полученные баллы суммируются с баллами за работу в семестре, взятыми с коэффициентом 0,6. Если студент набирает 60 и более баллов, получает оценку "зачтено", если набирает меньше 60 баллов, получает оценку "не зачтено".	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	Если студент набирает 60 или более баллов по БРС из 100 в течение семестра, он получает оценку "зачтено". В случае, если студент не набирает 60 баллов по БРС из 100 в течение семестра, он выполняет зачетную работу, где решает задачу (из 20 баллов) и отвечает на 2 теоретических вопроса (каждый из 10 баллов). Работа длится 2 часа. Полученные баллы суммируются с баллами за работу в семестре, взятыми с	пп. 2.5, 2.6

коэффициентом 0,6. Если студент набирает 60 и более баллов, получает оценку "зачтено", если набирает меньше 60 баллов, получает оценку "не зачтено". Оценка задачи: 8 баллов за правильное построение математической модели в виде начальной (граничной) задачи для дифференциального	
уравнения; 9 баллов за правильное решение уравнения; 3 балла за правильное нахождение параметров, входящих в решение.	

6.3. Оценочные материалы

Компетенции	тенции Результаты обучения		№ KM		
·			2	3	4
1() K-5	ОПК-3 Знает: методологию разработки непрерывных математических моделей для решения научных и практических задач		+	- +	-+
ОПК-3	Умеет: разрабатывать математические модели решаемых задач и проводить анализ их точности		+	- +	-+
IIIK-Z	Знает: методологию разработки непрерывных математических моделей для решения научных и практических задач		+	-	+
ПК-2	Умеет: разрабатывать математические модели решаемых задач и проводить анализ их точности	+	+	-	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
- г) методические указания для студентов по освоению дисциплины:
 - 1. Дильман В.Л. Непрерывниы модели. Челябинск: Изд. центр ${\rm HOYp}\Gamma{\rm Y}, 2020.45~{\rm c}.$
 - 2. Мышкис, А. Д. Элементы теории математических моделей [Текст] А. Д. Мышкис. 3-е изд., испр. М.: УРСС: КомКнига, 2007. 191 с. ил.

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 3. Дильман В.Л. Непрерывниы модели. Челябинск: Изд. центр ЮУрГУ, 2020. 45 с.
- 4. Мышкис, А. Д. Элементы теории математических моделей [Текст] А. Д. Мышкис. 3-е изд., испр. М.: УРСС: КомКнига, 2007. 191 с. ил.

Электронная учебно-методическая документация

$N_{\underline{0}}$	Вид	Наименование разработки	Наименование	Доступность	
---------------------	-----	-------------------------	--------------	-------------	--

	литературы		ресурса в электронной форме	(сеть Интернет / локальная сеть; авторизованный / свободный доступ)
1		математические и новые методы. Пелинеиные математические модели. Симметрия и принципы инвариантности. [Электронный ресурс] — Электрон дан — М : Физматлит	Электронно- библиотечная система издательства Лань	Интернет / Свободный
2	Литература	[Электронный ресурс] — Электрон. дан. — Минск: Новое знание, 2013. — 584 с. — Режим доступа:	Электронно- библиотечная система издательства Лань	Интернет / Свободный

Перечень используемого программного обеспечения:

- 1. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)
- 2. -Maple 13(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий	
Практические занятия и семинары	707 (1)	Компьютеры, проектор, доска	