ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Высшая школа электроники и компьютерных наук ___

Электронный документ, подписанный ПЭП, хранится в системе засктронного документооброта Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдант Голлай А. В. Пользователь: goldnarv

А. В. Голлай

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.27 Физические основы построения ЭВМ для направления 02.03.02 Фундаментальная информатика и информационные технологии уровень Бакалавриат форма обучения очная кафедра-разработчик Системное программирование

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, утверждённым приказом Минобрнауки от 23.08.2017 № 808

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доц., доцент

СОГЛАСОВАНО

Руководитель направления д.физ.-мат.н., проф.

Л. Б. Соколинский

И. И. Клебанов

электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (ОУРГ) (ОУРГ) (ОУРГ) (ОХНО-УБЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (ОХНО-УБЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (ОХНО-УБЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (ОХНО-УБЕДЕНИЯ О В

Л. Б. Соколинский

1. Цели и задачи дисциплины

Цель преподавания настоящей дисциплины — дать представление об основных физических принципах функционирования узлов ЭВМ и периферийного оборудования. В процессе преподавания дисциплины решаются следующие задачи: 1) анализ принципов построения и архитектур современных ЭВМ; 2) изучение основ устройства современных ЭВМ.

Краткое содержание дисциплины

Поколения ЭВМ и их элементная база. Направления развития микроэлектроники. Физические основы электропроводности металлов и полупроводников. Элементы физики полупроводников. Полупроводниковые диоды, биполярные и полевые транзисторы. Приборы и устройства транзисторного типа. Элементная база современных ЭВМ. Внутреннее устройство ЭВМ. Взаимодействие основных узлов ЭВМ. Полупроводниковые ЗУ. Интерфейсы ввода-вывода. Внешняя память в ЭВМ. Использование магнитных и оптических явлений. Связь ЭВМ с внешней средой. Ввод и вывод цифровой и аналоговой информации. Отображение визуальной информации. Отображение информации на твердых носителях. Линии связи между ЭВМ. Перспективы развития ЭВМ.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине Знает: физические основы работы структурных
ОПК-6 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	элементов ЭВМ Умеет: применять базовые математические и физические знания для моделирования физических процессов, лежащих в основе работы ЭВМ Имеет практический опыт: построения модели работы элемента ЭВМ и численного анализа модели

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Her	ФД.01 Академия интернета вещей, 1.О.25 Геоинформационные системы

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 4
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
с применением дистанционных образовательных технологий	0	
Подготовка к зачету	10	10
Выполнение самостоятельных работ; Работа со справочной, методической и научной литературой.	25,75	25.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No॒	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
раздела	•	Всего	Л	П3	ЛР	
1	Введение	1	1	0	0	
2	Элементы физики полупроводников	10	4	6	0	
3	Элементная база современных ЭВМ, системный блок	6	4	2	0	
4	Полупроводниковые запоминающие устройства	2	2	0	0	
5	Интерфейсы ввода-вывода	1	1	0	0	
6	Внешняя память в ЭВМ	2	2	0	0	
7	Отображение информации в ЭВМ	6	2	4	0	
8	Связь ЭВМ с внешней средой	4	0	4	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Поколения ЭВМ и их элементная база. Основные направления развития цифровых СБИС. Перспективы развития микроэлектроники.	1
2		Физические основы электропроводности металлов и полупроводников. Электроны, атомы, молекулы, кристаллы с позиций квантовой механики. Элементы физики твердых тел.	2
3		Элементы физики полупроводников. Электронно-дырочные переходы. Полупроводниковые диоды. Приборы и устройства, в которых используются свойства электронно-дырочного перехода.	1

4	2	Элементы физики полупроводников. Близкорасположенные электроннодырочные переходы. Биполярные и полевые транзисторы. Приборы и устройства транзисторного типа. Полупроводниковые устройства специальных типов.	1
5	3	Элементная база современных ЭВМ. Аналоговое и цифровое представление информации. Физическое представление информации в ЭВМ.	1
6	3	Внутреннее устройство ЭВМ. Взаимодействие основных узлов ЭВМ.	1
7	3	Перспективы развития ЭВМ. Новые материалы и технологии. Классические и квантовые вычисления. Квантовые компьютеры.	2
8	4	Полупроводниковые запоминающие устройства. Организация памяти.	2
9	5	Интерфейсы ввода-вывода. Обобщенная структура внешнего устройства.	1
10	6	Внешняя память в ЭВМ. Использование магнитных и оптических явлений.	2
11	7	Связь ЭВМ с внешней средой. Ввод, вывод, методы хранения и передачи цифровой и аналоговой информации. Отображение информации на твердом носителе.	1
12	7	Принципы отображения визуальной информации. Устройства отображения визуальной информации. Стереоскопическое отображение информации.	1
13	7	Типы связи между ЭВМ. Передача данных.	0

5.2. Практические занятия, семинары

№ занятия	№ разлела	Наименование или краткое содержание практического занятия, семинара		
1	<u> </u>	лементы физики полупроводников		
2		Элементная база современных ЭВМ, системный блок		
3	7	Связь ЭВМ с внешней средой		
4	8	Типы связи между ЭВМ. Передача данных	4	

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Подготовка к зачету	Печатная, основная, 1) или 2) - главы 2, 4, 5, 6, 8. Печатная основная, 3) или 4) - главы 2, 3, 4, 6: параграфы 2.1-2.7, 3.1-3.7, 4.1-4.4, 6.1-6.4. Печатная основная 5) главы 1-3, 5-12, 16-18: параграфы 2, 5, 6, 7, 11, 13-20, 21, 22, 25, 31, 33, 38, 39, 43, 44, 46, 47, 50-54, 63-65, 69-78, 99-102, 106-108, 109-114.	4	10		
Выполнение самостоятельных работ; Работа со справочной, методической и научной литературой.	Печатная, дополнительная, 5) - главы 5-8. Печатная, дополнительная, 11) - Раздел 3, Глава 11, параграфы 83-86, 92, Глава 12, параграфы 96-98, Глава 14, параграфы 109, 111, 114, Глава 16, параграфы 131-133, Раздел 4, Глава 20, параграфы 162,	4	25,75		

163, Раздел 5, Глава 21, параграф 165, Глава 22, параграфы 171, 172, Глава 23, параграф 176, Глава 24, параграф 185, Глава 25, параграфы 190, 196, Раздел 6, Глава 27, параграфы 208, 210, 211, Глава	
28, параграфы 213-217, 219, 220. Печатная, дополнительная, 13) - главы 5, 10.	

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	4	Текущий контроль	Коллоквиум 1	1	10	Студент должен письменно ответить на 2 вопроса из предлагаемого списка вопросов по разделу курса. Каждый ответ оценивается по пятибалльной системе. Таким образом, максимальный балл-10. Критерии оценки -5 баллов. Приведены все определения, формулировки и доказательства теорем, а также примеры. Неточностей и ошибок нет4 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях -3 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях и ошибки в доказательствах -2 балла. Приведены не все определения, доказательства теорем отсутствуют . Имеются неточности в определениях . 1 балл. Студент сделал попытку ответа на вопрос, но ответ не предоставил.	зачет
2	4	Текущий контроль	Коллоквиум 2	1	10	Студент должен письменно ответить на 2 вопроса из предлагаемого списка вопросов по разделу курса. Каждый ответ оценивается по пятибалльной системе. Таким образом, максимальный балл-10. Критерии оценки -5 баллов. Приведены все определения, формулировки и доказательства теорем, а также примеры. Неточностей и ошибок нет4 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях -3 балла. Приведены все определения,	зачет

						формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях и ошибки в доказательствах -2 балла. Приведены не все определения, доказательства теорем отсутствуют. Имеются неточности в определениях. 1 балл. Студент сделал попытку ответа на вопрос, но ответ не предоставил.	
3	4	Текущий контроль	Коллоквиум 3	1	10	Студент должен письменно ответить на 2 вопроса из предлагаемого списка вопросов по разделу курса. Каждый ответ оценивается по пятибалльной системе. Таким образом, максимальный балл-10. Критерии оценки -5 баллов. Приведены все определения, формулировки и доказательства теорем, а также примеры. Неточностей и ошибок нет4 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях -3 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях и ошибки в доказательствах -2 балла. Приведены не все определения, доказательства теорем отсутствуют . Имеются неточности в определениях . 1 балл. Студент сделал попытку ответа на вопрос, но ответ не предоставил.	зачет
4	4	Текущий контроль	Коллоквиум 4	1	10	Студент должен письменно ответить на 2 вопроса из предлагаемого списка вопросов по разделу курса. Каждый ответ оценивается по пятибалльной системе. Таким образом, максимальный балл-10. Критерии оценки -5 баллов. Приведены все определения, формулировки и доказательства теорем, а также примеры. Неточностей и ошибок нет4 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях -3 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях и ошибки в доказательствах -2 балла. Приведены не все определения, доказательства теорем отсутствуют . Имеются неточности в определениях . 1 балл. Студент сделал попытку ответа на вопрос, но ответ не предоставил.	зачет
5	4	Проме- жуточная аттестация	Зачетный коллоквиум	-	10	Студент должен письменно ответить на 2 вопроса из предлагаемого списка вопросов по разделу курса. Каждый ответ оценивается по пятибалльной системе. Таким образом, максимальный балл-10. Критерии оценки -5 баллов. Приведены все определения,	зачет

		формулировки и доказательства теорем, а также примеры. Неточностей и ошибок нет4 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях -3 балла. Приведены все определения, формулировки и доказательства теорем, а также примеры. Имеются неточности в определениях и ошибки в доказательствах -2 балла. Приведены не все определения, доказательства теорем отсутствуют. Имеются неточности в определениях. 1 балл. Студент сделал попытку ответа на вопрос, но ответ не предоставил	
--	--	---	--

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет		

6.3. Оценочные материалы

Компетенции	Результаты обучения	1	_	2 K	т 1	-
ОПК-6	Знает: физические основы работы структурных элементов ЭВМ		+	+	+	+
IL JI I K =N	Умеет: применять базовые математические и физические знания для моделирования физических процессов, лежащих в основе работы ЭВМ			+	+	+
IOHK-6	Имеет практический опыт: построения модели работы элемента ЭВМ и численного анализа модели	+	- +	+	+	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Таненбаум, Э. Архитектура компьютера Текст пер. с англ. Э. Таненбаум. 5-е изд. СПб. и др.: Питер, 2013. 843 с. ил. 1 электрон. опт. диск
 - 2. Таненбаум, Э. Архитектура компьютера Текст пер. с англ. Э. Таненбаум. 5-е изд. СПб. и др.: Питер, 2010. 843 с. ил. 1 электрон. опт. диск
 - 3. Коледов, Л. А. Технология и конструкции микросхем, микропроцессоров и микросборок Текст учебник для вузов по спец."Конструирование и технология электронных вычисл. средств и "Конструирование и технология радиоэлектронных средств" Л. А. Коледов. 2-е изд., испр. и доп. СПб. и др.: Лань, 2008. 400 с. ил.
 - 4. Савельев, И. В. Курс физики Текст Т. 2 Электричество. Колебания и волны. Волновая оптика учебное пособие для вузов по техн. и технол. направлениям и специальностям: в 3-х т. И. В. Савельев. 4-е изд., стер. СПб. и др.: Лань, 2008. 462 с. ил.

б) дополнительная литература:

- 1. Аваев, Н. А. Основы микроэлектроники Учеб. пособие для радиотехн. специальностей вузов Н. А. Аваев, Ю. Е. Наумов, В. Т. Фролкин. М.: Радио и связь, 1991. 287,[1] с. ил.
- 2. Щука, А. А. Электроника Текст учебное пособие для вузов по направлению 654100 Электроника и микроэлектроника А. А. Щука. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2008. 739 с. ил.
- 3. Бройдо, В. Л. Архитектура ЭВМ и систем Учеб. для вузов по специальности "Информ. системы" В. Л. Бройдо, О. П. Ильина. СПб. и др.: Питер, 2006. 717 с.
- 4. Гонда, С. Оптоэлектроника в вопросах и ответах Пер. с яп. Кругляка З. А. Л.: Энергоатомиздат. Ленинградское отделение, 1989. 181,[1] с. ил.
- 5. Епифанов, Г. И. Физические основы конструирования и технологии РЭА и ЭВА Учеб. пособие для вузов Г. И. Епифанов, Ю. А. Мома. М.: Советское радио, 1979. 352 с. ил.
- 6. Марголин, В. И. Физические основы микроэлектроники Текст учебник для вузов по специальности "Проектирование и технология радиоэлектрон. средств" направления "Проектирование и технология электрон. средств" В. И. Марголин, В. А. Жабрев, В. А. Тупик. М.: Академия, 2008. 398, [1] с. ил. 22 см.
- 7. Поршнев, С. В. Компьютерное моделирование физических процессов в пакете MATLAB Текст учеб. пособие для вузов С. В. Поршнев. 2-е изд., испр. СПб. и др.: Лань, 2011. 726 с. ил. 1 электрон. опт. диск
- 8. Савельев, И. В. Курс общей физики: В 3-х т. Т. 3 Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц Учеб. пособ. для втузов. 2-е изд., испр. М.: Наука, 1982. 304 с. ил.

- 9. Старосельский, В. И. Физика полупроводниковых приборов микроэлектроники Текст учеб. пособие для вузов по специальности 210100 "Электроника и микроэлектроника" В. И. Старосельский. М.: ЮРАЙТ: Высшее образование, 2009. 463 с. ил.
- 10. Трофимова, Т. И. Краткий курс физики Учеб. пособие для вузов Т. И. Трофимова. 5-е изд., стер. М.: Высшая школа, 2006. 352, [1] с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания для СРС

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания для СРС

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий предустановленное программи		Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические занятия и семинары	482 (3)	Доска (мел)
Лекции		ПК, проектор для представления презентаций лекций, ПО MS PowerPoint