ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога ПОУБГУ ПОЖНО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдант Горожанения А. Н. Поможнения СВГ ПОЖНО В П

А. Н. Горожанкин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М5.06 Системы солнечного нагрева в энергетике **для направления** 13.04.02 Электроэнергетика и электротехника **уровень** Магистратура

магистерская программа Комплексное использование возобновляемых источников энергии

форма обучения очная

кафедра-разработчик Электрические станции, сети и системы электроснабжения

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 13.04.02 Электроэнергетика и электротехника, утверждённым приказом Минобрнауки от 28.02.2018 № 147

Зав.кафедрой разработчика, д.техн.н., доц.

Разработчик программы, к.техн.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога (Ожно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Мартынов А. С. Подволожель: матіаномах Пата подписания: 01 09 2024

А. Н. Горожанкин

А. С. Мартьянов

1. Цели и задачи дисциплины

Целью дисциплины является подготовка научного работника, способного решать технические и научные вопросы и задачи, связанные с использованием энергии солнца для теплоснабжения потребителей. Задачи дисциплины: научить студентов разбираться в физике процессов и явлений, приводящих к появлению солнечного излучения; изучить конструкции устройств, преобразующих солнечное излучение в тепловую энергию; научиться грамотно прогнозировать и исследовать солнечный потенциал конкретного региона с целью использования его для получения тепловой энергии; уметь рассчитать экономическую эффективность использования солнечной энергии для теплоснабжения потребителей.

Краткое содержание дисциплины

Содержание дисциплины предусматривает рассмотрение принципов преобразования солнечной энергии в тепловую энергию на основе основных характеристик солнечного излучения. Изучение пассивных (закрытых и открытых) систем солнечного теплоснабжения с расчетами параметров и схем регулирования поступления солнечной радиации и конструкциями «солнечных» домов. В разделе активных (одноконтурных, двухконтурных и многоконтурных) систем солнечного теплоснабжения рассматриваются конструкции солнечных коллекторов (плоские, вакуумные), их расчет и выбор, а также вспомогательное оборудование (насосный модуль, баки-аккумуляторы, теплообменники, водонагреватели). Дисциплиной предусмотрено изучение вопросов проектирования и монтажа солнечных систем теплоснабжения, включающих определение освещённости солнечных коллекторов, периоды их эффективной работы, ориентацию и угол наклона и варианты и методы установки солнечных коллекторов, схемные решения автоматизации активных систем солнечного теплоснабжения и пути совершенствования технических решений систем.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: Устройство, принцип действия и режимы
ПК-1 Способен на высоком уровне проводить	работы гелиоустановок
научно-исследовательскую работу, включая	Умеет: Моделировать процессы солнечного
анализ специальной литературы, моделирование,	нагрева в элементах схемы
разработку и проведение экспериментальных	Имеет практический опыт: Проведения научно-
исследований.	исследовательской работы по использованию
	систем солнечного нагрева в энергетике

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Современные проблемы использования	Производственная практика (преддипломная) (4
возобновляемых источников энергии,	семестр),
Комплексное использование	Производственная практика (научно-
гидроэнергетических установок	исследовательская работа) (3 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Комплексное использование гидроэнергетических установок	Знает: Схемы, устройство оборудования и режимы работы гидроустановок Умеет: Проводить обзор и анализ специальной литературы по гидроэнергетическим установкам Имеет практический опыт: Проведения экспериментальных исследований по работе гидроэнергетических установок
Современные проблемы использования возобновляемых источников энергии	Знает: Современное состояние и проблемы по использованию возобновляемых источников энергии в России и за рубежом Умеет: Оценить важность каждой проблемы, провести их ранжирование и наметить пути решения проблем Имеет практический опыт: Решения возникающих проблем при использовании ВИЭ в энергетике

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 57,5 ч. контактной работы

	Всего	Распределение по семестрам в часах
Вид учебной работы	часов	Номер семестра
		2
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	50,5	50,5
Курсовая работа	50,5	50.5
Консультации и промежуточная аттестация	9,5	9,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен,КР

5. Содержание дисциплины

$N_{\underline{0}}$	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
раздела		Всего	Л	П3	ЛР	
1	Системы солнечного нагрева	48	16	16	16	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Классификация и основные элементы гелиосистем История развития гелиоэнергетики. Спектр электромагнитного излучения. Мощность излучения. Использование солнечного излучения в системах нагрева	4
2		Концентрирующие гелиоприемники Открытые и закрытые системы СТС. Стена Тромба. Гелиотеплицы. Принципы нагрева. Солнечные дома	4
3	1	Солнечные коллекторы Классификация активных систем СТС. Схемы одноконтурных и многоконтурных систем. Основные элементы систем СТС. Устройство плоских и вакуумных солнечных коллекторов. Принцип работы. Баки-аккумуляторы, Насосные модули. Система контроля.	4
4	1	Солнечные абсорберы Период эффективной работы плоского солнечного коллектора. Установка коллектора под углом. Азимут. Монтаж солнечных коллекторов Правила монтажа СК. Варианты установки СК.	4

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Знакомство с ANSYS. Особенности APDL и Workbench на примере стационарного расчета	4
2	1	Транзиентный расчет и методы явной динамики в задачах высокоскоростного нагружения	4
3	1	Тепловой расчет стационарных процессов в ANSYS Workbench	4
4	1	Тепловой расчет переходных процессов	4

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	1	Исследование гидродинамических процессов в ANSYS CFX	4
2		Исследование процесса теплообмена в трубопроводе с учетом влияния окружающей среды	4
3	1	Исследование теплообменника при тепловом и механическом нагружениях	4
4	1	Исследование циркуляционного насоса в ANSYS	4

5.4. Самостоятельная работа студента

Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Курсовая работа	СТО ЮУрГУ 21–2008 Стандарт организации. Система управления качеством образовательных процессов. Курсовая и выпускная квалификационная рабо та. Требования к содержанию и оформлению. – Челябинск: Изд-во ЮУрГУ, 2008. – 55 с.	2	50,5			

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	2	Текущий контроль	Задание №1. Знакомство с ANSYS. Особенности APDL и Workbench на примере стационарного расчета на прочность	1	100	Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты. Понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75.	экзамен
2	2	Текущий контроль	Задание №2. Транзиентный расчет и методы явной динамики в задачах высокоскоростного нагружения	1	100	Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95;	экзамен

						• в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75.	
3	2	Текущий контроль	Задание №3. Тепловой расчет стационарных процессов в ANSYS Workbench	1	100	Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75.	экзамен
4	2	Текущий контроль	Задание №4. Тепловой расчет переходных процессов	1	100	Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат	экзамен

						показывает менее 70%	
5	2	Текущий контроль	Задание №5. Тепловой расчет гидродинамических процессов в ANSYS CFX	1	100	оригинального текста - 0,75. Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты. Понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70%	экзамен
6	2	Текущий контроль	Задание №6. Моделирование процесса теплообмена в трубопроводе с учетом влияния окружающей среды Задание №7.	1	100	оригинального текста - 0,75. Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты. Понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75.	экзамен
7	2	Текущий контроль	Задание №7. Связанный расчет теплообменника при тепловом и	1	100	Оценка рассчитывается как максимальная оценка (100 баллов), которая умножается на понижающие коэффициенты.	экзамен

			нагружениях			• работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75. Оценка рассчитывается как максимальная оценка (100 баллов),	
8	2	Текущий контроль	Задание №8. Расчет и проектирование циркуляционного насоса в ANSYS	1	100	которая умножается на понижающие коэффициенты. Понижающие коэффициенты: • работа, просроченная не более, чем на 7 дней - 0,9; • работа, просроченная от 7 до 14 дней - 0,8; • работа, просроченная более, чем на 14 дней - 0,6; • отчет содержит менее 5000 печатных знаков - 0,8; • отчет содержит менее 2000 печатных знаков - 0,7; • в отчете имеются грамматические ошибки - 0,95; • в отчете встречаются значительные несоответствия стандарту СТО ЮУрГУ - 0,9; • в отчете отсутствуют ссылки на источники - 0,8; • проверка на антиплагиат показывает менее 70% оригинального текста - 0,75.	экзамен
9	2	Проме- жуточная аттестация	Экзамен	-	100	Согласно положению о БРС ЮУрГУ	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	Оценка за экзамен выставляется по результатам	В соответствии с пп.

	контрольных мероприятий согласно "Положению о БРС ЮУрГУ", п. 2.4 - 2.6.	2.5, 2.6 Положения
курсовые работы	Ι οδρεσεποραμμα πημ μαπμιμμα οφορμπεμμορο οτμετά ο	В соответствии с п. 2.7 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ KM 12345678			9			
II I I N = I	Знает: Устройство, принцип действия и режимы работы гелиоустановок	+	+	+	+	+	+++	+	+
ПК-1	Умеет: Моделировать процессы солнечного нагрева в элементах схемы	+	+	+	+	+	+ +	+	+
II I K = I	Имеет практический опыт: Проведения научно-исследовательской работы по использованию систем солнечного нагрева в энергетике	+	+	+	+	+	+-+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Грибанов, А. И. Нетрадиционные возобновляемые источники энергии [Текст] курс лекций по направлению "Теплоэнергетика и теплотехника" А. И. Грибанов ; Юж.-Урал. гос. ун-т, Каф. Пром. теплоэнергетика ; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2013. 73, [1] с. ил. электрон. версия
- 2. Торопов, Е. В. Возобновляемые источники энергии [Текст] конспект лекций Е. В. Торопов, А. И. Грибанов ; Юж.-Урал. гос. ун-т, Каф. Пром. теплоэнергетика ; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008. 66, [1] с. ил. электрон. версия
- 3. Удалов, С. Н. Возобновляемые источники энергии [Текст] учеб. для вузов С. Н. Удалов. Новосибирск: Издательство Новосибирского государственного технич, 2009
- 4. Елистратов, В. В. Использование возобновляемой энергии [Текст] учеб. пособие для вузов по направлению подготовки 140400 "Техн. физика" В. В. Елистратов; Санкт-Петербург. гос. политехн. ун-т. СПб.: Издательство Политехнического университета, 2010. 224 с. ил.

б) дополнительная литература:

- 1. Реферативный журнал. Нетрадиционные и возобновляемые источники энергии. 90. [Текст] отд. вып. Рос. акад. наук, Всерос. ин-т науч. и техн. информ. (ВИНИТИ) реферативный журнал. М.: ВИНИТИ, 1983-
- 2. Роза, А. да Возобновляемые источники энергии. Физикотехнические основы [Текст] учеб. пособие для инж.-физ. и энергет. фак. вузов А. да Роза; пер. с англ. под ред. С. П. Малышенко, О. С. Попеля. М.; Долгопрудный: Издательский дом МЭИ: Интеллект, 2010. 702, [1] с. ил., табл

- 3. Сибикин, Ю. Д. Нетрадиционные и возобновляемые источники энергии [Текст] учеб. пособие Ю. Д. Сибикин, М. Ю. Сибикин. М.: КноРус, 2010
- 4. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] Ч. 1 учеб. пособие для вузов по специальностям 140104 "Промышленная теплоэнергетика" и 140106 "Энергообеспечение предприятий" : в 2 ч. А. П. Баскаков ; науч. ред. С. Е. Щеклеин ; Урал. гос. техн. ун-т УПИ. Екатеринбург: УГТУ-УПИ, 2008. 94 с. ил.
- 5. Баскаков, А. П. Нетрадиционные и возобновляемые источники энергии [Текст] Ч. 2 учеб. пособие для вузов по специальностям 140104 "Промышленная теплоэнергетика" и 140106 "Энергообеспечение предприятий": в 2 ч. А. П. Баскаков; науч. ред. С. Е. Щеклеин. Екатеринбург: УГТУ-УПИ, 2008. 94 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. СТО ЮУрГУ 17-2008 Стандарт организации. Учебные рефераты. Общие требования к построению, содержанию и оформлению / составители: Т.И. Парубочая, Н.В. Сырейщикова, В.А. Смолко, Л.В. Винокурова. Челябинск: Изд-во ЮУрГУ, 2008. 40 с

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. СТО ЮУрГУ 17-2008 Стандарт организации. Учебные рефераты. Общие требования к построению, содержанию и оформлению / составители: Т.И. Парубочая, Н.В. Сырейщикова, В.А. Смолко, Л.В. Винокурова. — Челябинск: Изд-во ЮУрГУ, 2008. — 40 с

Электронная учебно-методическая документация

		Вид	Наименование	
N_{2}	Vo	литературы	ресурса в	Библиографическое описание
		литературы	электронной форме	
			Электронно-	Елистратов, В.В. Возобновляемая энергетика. [Электронный
1		Основная	библиотечная	ресурс] — Электрон. дан. — СПб. : СПбГПУ, 2011. — 239 с.
1		литература	система издательства	— Режим доступа: http://e.lanbook.com/book/50583 — Загл. с
			Лань	экрана.

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	255a (1)	компьютер, проектор, колонки
1	255a (1)	компьютер, проектор, колонки
Лабораторные занятия	255a (1)	компьютер, проектор, колонки