ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель специальности

Электронный документ, подписанный ПЭП, хранится в системе электронного документоборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Клытач Д. С. Пользователь: Курасов. СВЕДЕНИЯ СВЕ

Д. С. Клыгач

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.25 Основы построения непрерывно дискретных радиосистем и комплексов управления

для специальности 11.05.01 Радиоэлектронные системы и комплексы **уровень** Специалитет

форма обучения очная

кафедра-разработчик Радиоэлектроника и системы связи

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.05.01 Радиоэлектронные системы и комплексы, утверждённым приказом Минобрнауки от 09.02.2018 № 94

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доцент

Д. С. Клыгач

электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (БОУрг) (ОУВНО ЭВЛЬСКОЙ СООКОВ С

П. А. Угаров

1. Цели и задачи дисциплины

Целью дисциплины является: Обучение студентов основным понятиям, моделям и методам анализа и синтеза современных непрерывно-дискретных систем управления.

Краткое содержание дисциплины

Содержание дисциплины соответствует Государственному образовательному стандарту специальности в части выполнения требований, предъявляемых к уровню профессиональной квалификации выпускников, их знаний, умений и навыков по соответствующему циклу дисциплин. Содержание дисциплины соответствует междисциплинарной логике, а соотношение объемов основных разделов программы соответствует учебному плану. Бюджет времени, отводимого на различные виды аудиторных занятий (лекционные, лабораторные), согласован с бюджетом самостоятельной работы студентов различной формы (индивидуальные занятия, подготовка к лабораторным работам). Программа обучения ориентирована на применение компьютерной техники и различного программного обеспечения.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: современное состояние теории дискретно-
	непрерывных систем, в том числе направление,
	связанное с гибридными автоматами.
	Умеет: самостоятельно находить нерешенные
ПК-1 Способен осуществлять анализ состояния	проблемы в сфере дискретно-непрерывных
научно-технической проблемы, определять цели	систем, грамотно применять сочетания методов
и выполнять постановку задач проектирования	проектирования и моделирования.
	Имеет практический опыт: владения
	инструментами поиска информации по
	непрерывно-дискретным системам, в том числе в
	зарубежных источниках.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
1.Ф.01 Основы радиофотоники, 1.Ф.16 Основы квантовой радиоэлектроники, 1.Ф.24 Методы оптимизации радиосистем и комплексов управления, 1.Ф.04 Основы теории систем и комплексов радиоэлектронной борьбы, 1.Ф.26 Основы проектирования нелинейных радиосистем и комплексов управления, 1.Ф.08 Основы теории радиосистем и комплексов управления	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.Ф.01 Основы радиофотоники	Знает: классификацию оборудования для построения сетей оптической связи; основные физические и математические модели квантовых приборов и компонентов систем, используемых на этапах расчета и проектирования радиоэлектронных систем и комплексов; основные научно-технические проблемы и перспективы развития квантовых и оптоэлектронных приборов и устройств, математический аппарат квантовой электроники, теории волн и электродинамики сплошных сред для анализа работы и расчета характеристик устройств и систем оптического диапазона; основные законы естественнонаучных дисциплин в профессиональной деятельности; основные принципы построения и расчета оптических сетей; Умеет: рассчитывать основные параметры ВОЛС; использовать базовые элементы квантовой и оптической электроники; применять основные методы анализа квантовых и оптоэлектронных устройств для решения задач в системах передачи и обработки информации, использовать базовые элементы квантовой и оптической электроники; применять основные методы анализа квантовых и оптоэлектронных устройств для решения задач в системах передачи и обработки информации Имеет практический опыт: методологией измерения характеристик радиотехнических систем оптического диапазона., навыками расчета оптоволоконных линий связи; методологией использования аппаратуры для измерения характеристик радиотехнических
1.Ф.16 Основы квантовой радиоэлектроники	Знает: математический аппарат квантовой электроники, теории волн и электродинамики сплошных сред для анализа работы и расчета характеристик устройств и систем оптического диапазона; основные закономерности, содержание и сущность процессов и явлений, устройство, принципы действия квантовых приборов и систем. основные законы естественнонаучных дисциплин; методы вычислительной физики и математического моделирования структур, приборов квантовой и оптической электроники., основные научнотехнические проблемы и перспективы развития квантовых и оптоэлектронных приборов и устройств, а также основные области их применения и степени экологической опасности;

основные физические и математические модели кванто-вых приборов и компонентов систем, используемых на этапах расчета и проектирования радиоэлектронных сис-тем и комплексов Умеет: использовать математический аппарат квантовой электроники, теории волн и электродинамики сплошных сред для анализа работы и расчета характеристик приборов квантовой электроники; использовать возможности и технические характеристики приборов и устройств квантовой и оптической электроники в современных радиосистемах, использовать базовые элементы квантовой и оптической электроники и применять основные методы анализа квантовых и оптоэлектронных устройств для решения задач в системах передачи и обработки информации: ориентироваться в технической документации, делать оптимальный выбор оборудования. Имеет практический опыт: навыками привлекать для решения проблем, возни-кающих в ходе профессиональной деятельности, соответствующий физико-математический аппара;навыками использования устройств квантовой и опти-ческой электроники в радиоэлектронных системах;, методиками расчета основных характеристик систем связи, локационных и навигационных систем и комплексов, использующих оптический диапазон; методологией использования аппаратуры для измерения характеристик радиотехнических систем оптического диапазона; методами использования физических и математических моделей компонентов и устройств оптического диапазона, используемых на этапах расчета и проектирования систем и комплексов

1.Ф.04 Основы теории систем и комплексов радиоэлектронной борьбы

Знает: требования, предъявляемые к характеристикам помеховых сигналов, используемых в системах РЭБ; общие принципы построения и функционирования систем радиоразведки., источники помех в дисциплине основы теории систем и комплексов радиоэлектронной борьбы; возможные значения параметров помех, особенности распространения помех, методы и средства подавления помех; методы и средства защиты от помех; методы и средства испытаний на устойчивость к помехам; методы и средства измерений помех., методики разработки стратегии действий для выявления и решения проблемной ситуации, требования, предъявляемые к характеристикам помеховых сигналов, используемых в системах РЭБ Умеет: оценивать помехоустойчивость РЭСиК; выполнять математическое моделирование

объектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ., пользоваться нормативными документами, регламентирующими требования по электромагнитной совместимости; решать задачи прогнозирования помех от основных источников; оценивать изменение параметров помех при распространении;принимать решение по обеспечению электромагнитной совместимости; определять состав испытательного оборудования, необходимого для проведения испытаний; проводить основные виды испытаний на устойчивость к помехам и измерять уровнипомех., применять методы системного подхода и критического анализа проблемных ситуаций; оценивать помехоустойчивость РЭСиК; выполнять математическое моделированиеобъектов и процессов по типовым методикам, в том числе с использованием стандартных пакетов прикладных программ. Имеет практический опыт: владение навыками применения полученной информации при проектировании помехоустойчивых составных частей радиоэлектронных систем и комплексов., в навыках анализа результатов моделирования и расчетов современной теории систем и комплексов радиоэлектронной борьбы., методологией системного и критического анализа проблемных ситуаций; навыками применения полученной информации при проектировании помехоустойчивых составных частей радиоэлектронных систем и комплексов. Знает: современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в области радиоуправления., методики разработки стратегии действий для выявления и решения проблемной ситуации, понимает роль информации в современном мире. Умеет: использовать современную элементную базу, 1.Ф.08 Основы теории радиосистем и измерительную и вычислительную технику, комплексов управления информационные технологии припроектировании систем радиоуправления., применять системный подход для решения поставленных задач Имеет практический опыт: владения методами системного подхода к анализу и синтезу систем радиоуправления., владения навыками критического восприятия, поиска, анализа и синтеза информации. Знает: современное состояние радиосистем и комплексов управления, тенденции развития ., 1.Ф.24 Методы оптимизации радиосистем и основные понятия при решении задач анализа и комплексов управления синтеза радиосистем и комплексов, области применения современных методов оптимизации.

	Умеет: находить нерешенные проблемы и решать		
	задачи оптимизации радиосистем с помощью		
	математических методов., грамотно		
	формулировать задачу оптимизации радиосистем		
	и радиотехнических комплексов. Имеет		
	практический опыт: владения современными		
	технологиями оптимизации радиосистем для		
	решения задач проектирования., владения		
	современными технологиями оптимизации		
	радиосистем для решения общенаучных задач.		
	Знает: современные нелинейные радиосистемы		
	управления, направления развития, современные		
	методы расчета, анализа и проектирования		
	нелинейных радиосистем управления. Умеет:		
	рассчитывать характеристики линейных и		
	нелинейных радиосистем управления,		
1.Ф.26 Основы проектирования нелинейных	разрабатывать алгоритмы управления для		
радиосистем и комплексов управления	реализации требуемых законов управления,		
радиосистем и комплексов управления	реализовывать разработанные алгоритмы,		
	разрабатывать техническое задание на		
	проектирование. Имеет практический опыт:		
	владения современным программным		
	обеспечением для моделирования радиосистем		
	управления, навыками построения моделей		
	нелинейных систем и работы с ними.		

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 54,25 ч. контактной работы

		Распределение
Ριμπ νημοδικού ποδοπιμ	Всего	по семестрам в часах
Вид учебной работы	часов	Номер семестра
		10
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	53,75	53,75
Моделирование непрерывно-дискретного взаимодействия объекта управления и автомата, осуществляющего управление	23,75	23.75
Создание модели гибридной системы в среде Matlab или посредством иных инструментов	30	30
Консультации и промежуточная аттестация	6,25	6,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

раздела		вид	ам в ч	acax	
		Всего	Л	П3	ЛР
1	введение	4	4	0	0
/.	Единая модель непрерывно-дискретной системы — гибридный автомат	18	12	0	6
1 3	Синтез непрерывно-дискретной системы численными методами	23	13	0	10
4	Принцип бисимуляции для непрерывно-дискретных систем	3	3	0	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Предмет курса и его задачи	4
2	2	Модель системы в непрерывно-дискретном пространстве состояний	4
3	2	Множества достижимости и переходные множества	4
4	/.	Существование и единственность решений в дискретно-непрерывном пространстве состояний	4
5	3	Современная методология синтеза методами Model Checking	4
6	3	Дедуктивные методы синстеза гибридных систем	4
7	3	Классификация решений непрерывно-дискретной системы	4
8	3	Практическое применение гибридного автомата	1
9	4	Бисимуляция непрерывно-дискретной системы управления	3

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

<u>№</u> занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	2	Разработка модели непрерывно-дискретного автомата	
2	3	Моделирование непрерывно-дискретного автомата в StateFlow или иной среде	6
3	3	Исследование свойств решений гибридного автомата	4

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	1 , , 1 ,	Семестр		
	pecypc		часов	
взаимодействия объекта управления и	1. Lygeros J., Godbole D.N., Sastry S. A design framework for hierarchical, hybrid control. California PATH Research Report, UCB-ITS-PRR-97-24. — University of California, Berkeley, 1997. — 36 р. 2. Угаров П.А. Координация в иерархических		23,75	

	гибридных системах управления с использованием поведенческих абстракций // Известия Челябинского научного центра УрО РАН. – 2004. – № 1 (22). – С. 186–191.		
Создание модели гибридной системы в среде Matlab или посредством иных инструментов	1. В. П. Дьяконов. MATLAB и SIMULINK для радиоинженеров, ДМК Пресс, 2011 г.	10	30

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	10	Проме- жуточная аттестация	Контрольное задание по построению модели в виде непрерывно-дискретного автомата для описанного физического объекта (процесса)		5	Максимальный балл - полное соответствие модели объекту, все компоненты записаны правильно, приведено графическое представление	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	построение непрерывно-дискретных моделей для	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	№ KM 1
IIIK-I	Знает: современное состояние теории дискретно-непрерывных систем, в том числе направление, связанное с гибридными автоматами.	+
ПК-1	Умеет: самостоятельно находить нерешенные проблемы в сфере дискретнонепрерывных систем, грамотно применять сочетания методов проектирования и	+

	моделирования.	
ПК-1	Имеет практический опыт: владения инструментами поиска информации по	L
1111/-1	непрерывно-дискретным системам, в том числе в зарубежных источниках.	'

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Зырянов, Г. В. Линейные дискретные системы управления Учеб. пособие Г. В. Зырянов; Юж.-Урал. гос. ун-т, Каф. Системы упр.; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2005. 107, [1] с.
 - 2. Бесекерский, В. А. Цифровые автоматические системы. М.: Наука, 1976. 575 с. ил.

б) дополнительная литература:

- 1. Кузовков, Н. Т. Непрерывные и дискретные системы управления и методы идентификации Н. Т. Кузовков, С. В. Карабанов, О. С. Салычев. М.: Машиностроение, 1978. 222 с. ил.
- 2. Браммер, Ю. А. Импульсные и цифровые устройства Учеб. для сред. спец. электрорадиоприборостроит. учеб. заведений Ю. А. Браммер, И. Н. Пащук. 7-е изд., перераб. и доп. М.: Высшая школа, 2003. 350,[1] с. ил.

в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:

- 1. Программирование ,науч. журн. ,Рос. акад. наук, Отд-ние информатики, вычисл. техники и автоматизации, Моск. гос. ун-т
- 2. Автоматика и телемеханика ,ежемес. журн. ,Рос. акад. наук, Отдние энергетики машиностроения, механики и процессов управления , Ин-т пробл. управления РАН, Ин-т пробл. передачи инф-ции РАН
- г) методические указания для студентов по освоению дисциплины:
 - 1. Ашманов С.А., Тимохов А.В. Теория оптимизации в задачах и упражнениях. М.: Наука, 1991. 448 с.
 - 2. Алексеев В.М., Галеев Э.М. Тихомиров Б.М. Сборник задач по оптимизации. М.: Наука, 1984. 288 с.
 - 3. Lecture Notes on Hybrid Systems. John Lygeros. Department of Electrical and Computer Engineering. University of Patras. Rio, Patras, GR-26500, Greece.
 - 4. Базара М., Шетти К. Нелинейное программирование. Теория и алгоритмы. М.: Мир, 1982. 583 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в	Библиографическое описание
	лигературы	электронной	

		форме	
1	1 71	Учебно- методические материалы кафедры	Моделирование непрерывно-дискретных систем с помощью гибридных автоматов https://edu.susu.ru/mod/resource/view.php?id=1183799
2	Основная литература	Электронно- библиотечная система издательства Лань	Управление непрерывными и дискретными процессами. [Электронный ресурс] / А.А. Бобцов [и др.]. — Электрон. дан. — СПб. : НИУ ИТМО, 2010. — 176 с. — Режим доступа: http://e.lanbook.com/book/40739 — Загл. с экрана.
3	Дополнительная литература	Электронно- библиотечная система издательства Лань	Иванов, В.А. Теория дискретных систем автоматического управления: учеб. пособие: В 2 частях — часть 1. [Электронный ресурс]: учеб. пособие / В.А. Иванов, М.А. Голованов. — Электрон. дан. — М.: МГТУ им. Н.Э. Баумана, 2010. — 100 с. — Режим доступа: http://e.lanbook.com/book/58434 — Загл. с экрана.

Перечень используемого программного обеспечения:

1. Math Works-MATLAB, Simulink 2013b(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. EBSCO Information Services-EBSCOhost Research Databases(28.02.2017)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные 502 занятия (ПЛК		Компьютеры