ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Политехнический институт

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ваулин С. Д. Пользователь: vaulinsd

С. Д. Ваулин

РАБОЧАЯ ПРОГРАММА

дисциплины В.1.13 Экспериментальная механика для направления 15.03.03 Прикладная механика уровень бакалавр тип программы Академический бакалавриат профиль подготовки Прикладная механика, динамика и прочность машин форма обучения очная кафедра-разработчик Техническая механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.03 Прикладная механика, утверждённым приказом Минобрнауки от 12.03.2015 № 220

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., доц., доцент

Дасктронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожне-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Тараненко П. А. Пользователь: taranethopa (Тата подписания 2 80 9 202)

электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Рихтер Е. Е. Пользователь: rikhtere. Дата подписания: 28 09 2021

П. А. Тараненко

Е. Е. Рихтер

1. Цели и задачи дисциплины

Основная цель изучения дисциплины заключается в усвоении выпускниками теоретических знаний и выработке практических навыков в области экспериментальных исследований прочности и нагруженности объектов с использованием современных методов измерения неэлектрических величин электрическими и оптико-геометрическими методами. Задачи: - знать существующие методы экспериментальных исследований для регистрации НДС, силовых и кинематических параметров машин и механизмов - уметь спользовать современные средства экспериментальных измерений для регистрации НДС, силовых, кинематических параметров машин и механизмов - технологиями установки и использования измерительных устройств и аппаратуры для регистрации НДС, силовых, кинематических параметров машин и механизмов.

Краткое содержание дисциплины

Экспериментальная механика включает разделы: - общая классификация измерительных преобразователей, понятие о параметрических и генераторных преобразователях, структурные схемы измерения; - основные типы измерительных преобразователей: тензорезисторные, потенциометрические, электромагнитные, фотоэлектрические, гальваномагнитные и другие виды; физические принципы их работы, основные типы метрологических характеристик, достоинства и недостатки различных видов измерительных преобразователей; - область применения измерительных преобразователей, возможности их использования для исследования нагруженности, напряженно—деформированного состояния узлов и деталей, а также для изучения силовых и кинематических параметров машин;

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине (ЗУНы)
ПК-8 готовностью выполнять расчетно- экспериментальные работы в области прикладной механики с использованием современных вычислительных методов, высокопроизводительных вычислительных систем и наукоемких компьютерных технологий, широко распространенных в промышленности систем мирового уровня	Владеть: Навыками выполнения расчетно-
	экспериментальных работ с использованием современного лабораторного оборудования.
ПК-9 готовностью использовать наукоемкое экспериментальное оборудование для проведения механических испытаний	Знать: Фирмы изготовители, основные марки экспериментального оборудования, их характеристики, достоинства и недостатки. Уметь: Применять современное экспериментальное оборудование прни решении задач прикладной механики. Владеть: Навыками работы с современными
	измерительно-вычислительными комплексами.

ПК-2 способностью применять физикоматематический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности

Знать: Существующие методы экспериментальных исследований для регистрации НДС, силовых и кинематических параметров машин и механизмов

Уметь: Использовать современные средства экспериментальных измерений для регистрации НДС, силовых, кинематических параметров

Владеть: Технологиями установки и использования измерительных устройств и аппаратуры для регистрации НДС, силовых, кинематических параметров машин и механизмов.

машин и механизмов

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Б.1.20 Электротехника и электроника,	ДВ.1.06.02 Динамические испытания,
ДВ.1.03.01 Кинематика и динамика твердых тел,	ДВ.1.07.02 Экспериментальные методы
Б.1.13 Сопротивление материалов,	исследования динамики и прочности
Б.1.07 Информатика и программирование,	конструкций,
В.1.12 Метрология, стандартизация и	ДВ.1.05.01 Устойчивость механических систем,
сертификация	ДВ.1.07.01 Виброметрия и вибродиагностика

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Б.1.13 Сопротивление материалов	Методы расчета упругих элементов на прочность и на жесткость
Б.1.07 Информатика и программирование	использование стандартных пакетов ПП для обработки экспериментальной информации и представление результатов исследований
ДВ.1.03.01 Кинематика и динамика твердых тел	законы движения и динамические нагрузки при колебаниях, системы с сосредоточенными и распределенными параметрами
В.1.12 Метрология, стандартизация и сертификация	представление о методах сертификации и стандартизации, оценка погрешности измерений, метрологические характеристики приборов и устройств
Б.1.20 Электротехника и электроника	Расчет электрических цепей при слаботочном воздействии, мост Уитстона

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч.

Βυπ γιμοδικού παδοτι ι	Всего	Распределение по семестрам
Вид учебной работы	часов	в часах

		Номер семестра
		5
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	60	60
Обработка результатов и оформление отчетов по лабораторным работам	20	20
Подготовка реферата.	25	25
Подготовка к зачету.	15	15
Вид итогового контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№ раздела	Наименование разлелов лисциплины		Объем аудиторных занятий по вид в часах		
		Всего	Л	ПЗ	ЛР
1	Введение. Место и задачи экспериментальных исследований в комплексе научно-исследовательских работ. Основные сведения об электромеханических измерениях, понятия и определения. Статические характеристики измерительных преобразователей. Функция преобразования. Погрешности измерения при статических измерениях, их классификация.	6	2	2	2
2	Основы электротензометрии. Тензорезисторные преобразователи. Основные типы тензорезисторов: проволочные, фольговые и полупроводниковые. Основные метрологические характеристики тензорезисторов. Способы изготовления, технология наклейки, монтаж одиночных датчиков и розеток. Метрологические характеристики тензорезисторов. Способы их определения. Измерительные схемы с тензорезисторами. Потенциометрическая, мостовая и полумостовая схемы подключения датчиков. Выбор тензорезисторов в зависимости от задач и условий измерения. Использование тензорезисторов для исследования напряженно-деформированного состояния конструкций. Методы разделения деформаций. Измерение сил, давлений и крутящих моментов с использование тензорезисторов. Определение кинематических параметров узлов и деталей с использованием тензорезисторов. Специальные виды тензорезисторов.	24	8	8	8
3	Электромагнитные преобразователи. Индуктивные, трансформаторные, индукционные и магнитоупругие. Используемый физический принцип, материалы, характеристика и конструкция. Электростатические преобразователи. Принцип действия. Физические основы работы. Типы емкостных преобразователей. Измерительные схемы, их особенности; мостовая и контурная схемы.	6	2	2	2
4	Пьезоэлектрические преобразователи. Пьезоэффект: прямой и обратный; материалы используемые в пьезоэлектрических преобразователях, ихсвойства. Пьезорезонансные преобразователи: особенности применения, достоинства и недостатки. Конструктивные особенности пьезопреобразователей. Фотоэлектрические	6	2	2	2

	преобразователи. Физические принципы работы, классификация по типу фотоэффекта. Основные характеристики. Внешний и внутренний фотоэффект. Особенности конструкции.				
5	Измерение температуры. Общие сведения. Понятие о термодинамической шкале; термометры механической группы. Термоэлектрический метод измерения; общие сведения, требования к термоэлектрическим материалам, технология изготовления термопар, электрические схемы соединения термопар; примеры термометрирования деталей и узлов машин. Термометры сопротивления. принцип действия, диапазон измерений, точность.	6	2	2	2

5.1. Лекции

	1		T.C.
No N	$N_{\underline{0}}$	11	Кол-
лекции	раздела	Наименование или краткое содержание лекционного занятия	во часов
1	1	Введение. Электрические измерения неэлектрических величин. Общие положения. Основные понятия измерительной техники. Метрология и стандартизация. Виды и методы измерений. Измерительные преобразователи и структурные схемы измерений.	2
2	2	Основы электротензометрии. Тензорезисторные преобразователи. Основные типы тензорезисторов: проволочные, фольговые и полупроводниковые.	2
3		Основные метрологические характеристики тензорезисторов. Способы изготовления, технология наклейки, монтаж одиночных датчиков и розеток.	2
4	2	Измерительные схемы с тензорезисторами. Потенциометрическая, мостовая и полумостовая схемы подключения датчиков. Выбор тензорезисторов в зависимости от задач и условий измерения. Использование тензорезисторов для исследования напряженно-деформированного состояния конструкций. Методы разделения деформаций.	2
5	2	Измерение сил, давлений и крутящих моментов с использование тензорезисторов. Определение кинематических параметров узлов и деталей с использованием тензорезисторов. Специальные виды тензорезисторов.	2
6	3	Электромагнитные преобразователи. Индуктивные, трансформаторные, индукционные и магнитоупругие. Используемый физический принцип, материалы, характеристика и конструкция. Особенности расчета параметров электромагнитных преобразователей. Преимущества и недостатки. Схемы включения. Измерители силовых и кинематических параметров машин на основе электромагнитных преобразователей. Электростатические преобразователи. Принцип действия. Физические основы работы. Типы емкостных преобразователей. Измерительные схемы, их особенности; мостовая и контурная схемы. Основные требования предъявляемые к параметрам емкостных преобразователей; достоинства и недостатки электростатических датчиков. Конструктивные особенности и характеристики емкостных преобразователей, используемых для исследования параметров машин.	2
7	4	Пьезоэлектрические преобразователи. Пьезоэффект: прямой и обратный; материалы используемые в пьезоэлектрических преобразователях, их свойства. Пьезорезонансные преобразователи: особенности применения, достоинства и недостатки. Конструктивные особенности пьезопреобразователей; электрические схемы; усилительные устройства, работающие в комплекте с пьезодатчиками. Измерительные преобразователи на основе пьезоэффекта для измерения усилий, давлений, ускорений и других параметров машин. Фотоэлектрические преобразователи. Физические принципы работы, классификация по типу фотоэффекта. Основные	2

		характеристики. Внешний и внутренний фотоэффект. Особенности конструкции. Измерение механических параметров с использованием фотоэлектрических преобразователей.	
8	5	Измерение температуры. Общие сведения. Понятие о термодинамической шкале; термометры механической группы. Термоэлектрический метод измерения; общие сведения, требования к термоэлектрическим материалам, технология изготовления термопар, электрические схемы соединения термопар; примеры термометрирования различных объектов. Термометры сопротивления. принцип действия, диапазон измерений, точность; достоинства и недостатки, материалы, используемые для термометров сопротивления, их характеристика, конструктивные особенности термодатчиков. Приборы и аппаратура для измерения температуры: милливольтметры, потенциометры, тепловизоры и т.д.	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Метрологические характеристики тензорезисторов. Способы их определения.	2
2	2	Измерительные схемы с тензорезисторами. Потенциометрическая, мостовая и полумостовая схемы подключения датчиков.	2
3	2	Измерение сил, давлений и крутящих моментов с использование тензорезисторов. Определение кинематических параметров узлов и деталей с использованием тензорезисторов.	2
4	2	Определение кинематических параметров узлов и деталей с использованием тензорезисторов.	2
5	2	Определение кинематических параметров узлов и деталей с использованием тензорезисторов.	2
6	3	Особенности расчета параметров электромагнитных преобразователей. Преимущества и недостатки. Схемы включения. Измерители силовых и кинематических параметров машин на основе электромагнитных преобразователей.	2
7	4	Конструктивные особенности пьезопреобразователей; электрические схемы; усилительные устройства, работающие в комплекте с пьезодатчиками. Измерительные преобразователи на основе пьезоэффекта для измерения усилий, давлений, ускорений и других параметров машин.	2
8		Измерение температуры. Общие сведения. Понятие о термодинамической шкале; термометры механической группы. Термоэлектрический метод измерения; общие сведения, требования к термоэлектрическим материалам, технология изготовления термопар, электрические схемы соединения термопар; примеры термометрирования различных объектов.	2

5.3. Лабораторные работы

<u>№</u> занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	1	Определение амплитудно-частотных и фазочастоных характеристик измерительных преобразователей различных типов (тензометрического, индуктивного, пьезоэлектрического). Динамическая градуировка акселерометров и виброметров. Динамическая градуировка акселерометров и виброметров. Навыки работы с виброизмерительной аппаратурой,	2

		электронно-лучевыми и светолучевыми осциллгорафами. Изучение конструкций тензометрических, индуктивных, пьезоэлектрических датчиков. Использование и освоение различных методов построения АЧХ и ФЧХ.	
2	2	Основы электротензометрии. Приобретение навыков наклейки, монтажа и подключения тензодатчиков.	2
3	2	Определение метрологических характеристик тензорезисторных преобразователей.	2
4	2	Исследование статистических характеристик случайных нагрузок с помощью системы тензометрических устройств. Установка «БОКС». Освоение современных методов расшифровки осциллограмм случайных процессов.	2
5	2	Исследование динамических усилий в кулачковом механизме. Определение КПД высшей кинематической пары.	2
6	3	Исследование сил сопротивления в механизме торможения. Регистрация ударных процессов. Иллюстрация комплексного экспериментального исследования изучаемого явления.	2
7	4	Навыки работы с большим количеством разнообразных измерительных преобразователей: тензорезисторных, индуктивных, фотоэлектрических и т.д. усилительной и регистрирующей аппаратурой. Настройка и градуировка всего измерительного комплекса. Анализ и обработка осциллограмм.	2
8	5	Исследование температурных полей и напряжений.	2

5.4. Самостоятельная работа студента

Выполнение СРС			
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов	
Обработка результатов и оформление отчетов по лабораторным работам	Учебное пособие по курсу "Экспериментальная механика", электронный ресурс: лаб. раб. №2 с.12-23; лаб. раб. №3 с.23-34; лаб.раб. №4 с.34-39; лаб. раб. №5 с.40-45; лаб. раб. №6 с.45-52; лаб. раб. №7 с.53-60; лаб. раб. №8 с.60-68.	20	
Подготовка реферата.	На основе периодических изданий и реферативных журналов: 1. Измерительная техника; 2. Датчики и системы; 3. Приборы и сисстемы; 4. Приборы и техника эксперимента; 5. Приборы и средства автоматизации; 6. Заводская лаборатория; 7. Контрольно-измерительные приборы и системы; 8. Мир измерений.	25	
Подготовка к зачету.	Основная литература: [1] гл.1 с.19-31; гл.2 с.32-57; гл.3 с.58-144; гл.8 с.323-343; гл.9 с. 345-358; гл.10 с.359-377; гл.16 с.468-509; гл.18 с.545-566. [2] гл.1 с.7-35; гл.2 с.55-91; гл.3 с.99-151. [3] гл.8 с.150-187; гл.10 с.210-214. [4] гл.3 с.87-71. Дополнительная литература: [1] гл.1 с.8-20; гл.3 с.44-61; гл.4 с.68-97; гл.5 с.99-110. [2] гл.1 с.7-22; гл.4 с.102-125. [3] гл.1 с.5-27; гл.3 с.69-92.	15	

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных занятий	Вид работы (Л, ПЗ, ЛР)	Краткое описание	Кол-во ауд. часов
Использование современных средств измерений при проведении лабораторных работ	лаоораторные	Использование современного оборудования при проведении цикла лабораторных работ	16
Чтение лекций в мультимедийной аудитории		Проведение лекций в мультимедийных аудиториях	16

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: Использование навыков, полученных при выполнении лабораторных работ по курсу ЭМИ при проведении экспериментальных исследований в рамках прохождения практик, выполнения бакалаврских и магистерских работ.

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Основы электротензометрии. Тензорезисторные преобразователи. Основные типы тензорезисторов: проволочные, фольговые и полупроводниковые. Основные метрологические характеристики тензорезисторов. Способы изготовления, технология наклейки, монтаж одиночных датчиков и розеток. Метрологические характеристики тензорезисторов. Способы их определения. Измерительные схемы с тензорезисторами. Потенциометрическая, мостовая и полумостовая схемы подключения датчиков. Выбор тензорезисторов в зависимости от задач и условий измерения.	ПК-2 способностью применять физикоматематический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности	письменный опрос	Список контрольных вопросов по тензометрии

Использование тензорезисторов для исследования напряженно-деформированного состояния конструкций. Методы разделения деформаций. Измерение сил, давлений и крутящих моментов с использование тензорезисторов. Определение кинематических параметров узлов и деталей с использованием тензорезисторов. Специальные виды тензорезисторов.			
Электромагнитные преобразователи. Индуктивные, трансформаторные, индукционные и магнитоупругие. Используемый физический принцип, материалы, характеристика и конструкция. Электростатические преобразователи. Принцип действия. Физические основы работы. Типы емкостных преобразователей. Измерительные схемы, их особенности; мостовая и контурная схемы.	ПК-9 готовностью использовать наукоемкое экспериментальное оборудование для проведения механических испытаний	письменный опрос	Список контрольных вопросов по электромагнитным преобразователям
Пьезоэлектрические преобразователи. Пьезоэффект: прямой и обратный; материалы используемые в пьезоэлектрических преобразователях, ихсвойства. Пьезорезонансные преобразователи: особенности применения, достоинства и недостатки. Конструктивные особенности пьезопреобразователей. Фотоэлектрические преобразователи. Физические принципы работы, классификация по типу фотоэффекта. Основные характеристики. Внешний и внутренний фотоэффект. Особенности конструкции.	ПК-8 готовностью выполнять расчетно-экспериментальные работы в области прикладной механики с использованием современных вычислительных методов, высокопроизводительных вычислительных систем и наукоемких компьютерных технологий, широко распространенных в промышленности систем мирового уровня	письменный опрос	Список контрольных вопросов по пьезоэлектрическим преобразователям
Измерение температуры. Общие сведения. Понятие о термодинамической шкале; термометры механической	ПК-9 готовностью использовать наукоемкое экспериментальное оборудование для проведения механических испытаний	письменный опрос	Список контрольных вопросов по измерению температуры

термоэлектрическим материалам, технология изготовления термопар, электрические схемы соединения термопар; примеры термометрирования деталей и узлов машин. Термометры сопротивления. принцип действия, диапазон измерений, точность.			
Все разделы	вычислительных методов, высокопроизводительных вычислительных систем и наукоемких компьютерных технологий, широко распространенных в промышленности систем мирового уровня	прием отчетов по лабораторным работам	отчеты по лабораторным работам
Все разделы	ПК-9 готовностью использовать наукоемкое экспериментальное оборудование для проведения механических испытаний	защита реферата	реферат по одному из разделов курса
Все разделы	ПК-8 готовностью выполнять расчетно-экспериментальные работы в области прикладной механики с использованием современных вычислительных методов, высокопроизводительных вычислительных систем и наукоемких компьютерных технологий, широко распространенных в промышленности систем мирового уровня	зачет	вопросы к зачету
Все разделы	пк-9 готовностью использовать наукоемкое экспериментальное оборудование для проведения механических испытаний	зачет	вопросы к зачету

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
письменный опрос	Письменный опрос осуществляется на последнем занятии изучаемого раздела Студенту задаются 5 вопросов из списка контрольных вопросов. Время отведенное на опрос - 25 мин. При оценивании результатов мероприятия используется балльно-	Зачтено: рейтинг обучающегося за мероприятие больше или равно 60%. Не зачтено: рейтинг

	~	Ę
	рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179) Правильный ответ на вопрос соответствует 2 баллам. Частично правильный ответ соответствует 1 баллу. Неправильный ответ	обучающегося за мероприятие менее 60%.
	соответствует 0 баллов. Максимальное количество	
	баллов - 10. Весовой коэффициент мероприятия - 1.	
прием отчетов по лабораторным работам	вопросов). При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Общий балл при оценке складывается из следующих показателей: - сформулирована цель работы и основные полученные результаты - 1 балл; - выводы логичны и обоснованы - 2 балла; - оформление работы соответствует требованиям - 2 балла. Максимальное количество баллов - 5. Весовой коэффициент мероприятия - 1	Зачтено: рейтинг обучающегося за мероприятие больше или равно 60% Не зачтено: рейтинг обучающегося за мероприятие менее 60%
защита реферата	Темы рефератов выдаются в первую неделю семестра. За две недели до конца семестра подготовленный реферат сдается на проверку преподавателю и возвращается студенту с вопросами и замечаниями по теме реферата. Студент исправляет отмеченные недостатки и готовит ответы на заданные вопросы. Защита проходит в форме краткого выступления по теме реферата и ответов на вопросы. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179). Показатели оценивания: - соответствие теме реферата - 1 балл; - оформление реферата в соответствии с требованиями - 1 балл; - глубина раскрытия темы - 2 балла; - правильность и четкость ответов по теме реферата - 1 балл. Максимальное количество баллов 5. Весовой коэффициент мероприятия - 2.	Зачтено: рейтинг обучающегося за мероприятие больше или равно 60% Не зачтено: рейтинг обучающегося за мероприятие менее 60%
зачет	Зачет проводится в форме компьютерного тестирования. Тест состоит из 15 вопросов, позволяющих оценить сформированность компетенций. На ответы отводиться 1 час. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. №179) Правильный ответ соответствует 1 баллу. Неправильный	Зачтено: величина рейтинга обучающегося по дисциплине больше или равно 60% Не зачтено: величина рейтинга обучающегося по дисциплине менее 60%

7.3. Типовые контрольные задания

Вид контроля	Типовые контрольные задания	
письменный опрос	Списки контрольных вопросов по разделам: электротензоиетрия; электромагнитные преобразователи; пъезоэлектрические преобразователи; измерение температуры. вопросыпоЭМИ.doc	
прием отчетов по лабораторным работам	вопросы к лабораторным работам по курсу "Экспериментальная механика" вопросыЭМИ_л_p.doc	
защита реферата	Перечень тем рефератов. ТемыРефератов16.docx	
зачет	тесты для проведения зачета ЗАЧЕТ2017.docx	

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Фрайден, Д. Современные датчики Текст справочник Д. Фрайден ; пер. с англ. Ю. А. Заболотной ; под ред. Е. Л. Свинцова. М.: Техносфера, 2006. 588 с. ил.
- 2. Агейкин, Д. И. Датчики систем автоматическогго контроля и регулирования [Текст] справ. материалы Д. И. Агейкин, Е. Н. Костина, Н. Н. Кузнецова; под ред. Б. С. Сотскова. М.: Машгиз, 1959. 579 с. ил., 2 л. табл.
- 3. Датчики и системы науч.-техн. и произв. журн. Ин-т проблем управления Рос. акад. наук, Моск. гос. ин-т электроники и математики, ООО "СенСиДат- Контрол"(ред.) журнал. М., 2000-

б) дополнительная литература:

- 1. Малов, В. В. Пьезорезонансные датчики В. В. Малов. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1989. 272 с. ил.
- 2. Конюхов, Н. Е. Электромагнитные датчики механических величин Н. Е. Конюхов, Ф. М. Медников, М. Л. Нечаевский. М.: Машиностроение, 1987. 255 с. ил.
- 3. Датчики [Текст] справ. пособие В. М. Шарапов и др.; под общ. ред. М. В. Шарапова, Е. С. Полищук. М.: Техносфера, 2012. 616, [2] с. ил.

в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:

- 1. Датчики и системы. Научно-технический журнал.
- 2. Измерительная техника. Научно-технический журнал.
- 3. Приборы и системы. Управление, контроль, диагностика. Научнотехнический журнал.
 - 4. Приборы и техника эксперимента. Научно-технический журнал.
 - 5. Приборы и средства автоматизации. Научно-технический журнал.
 - 6. Заводская лаборатория. Научно-технический журнал.
- 7. Контрольно-измерительные приборы и системы. Научно-технический журнал.
 - 8. Мир измерений. Научно-технический журнал.

г) методические указания для студентов по освоению дисциплины:

1. Экспериментальная механика, раздел электромеханические измерения: учебное пособие к лабораторным работам / И.Я. Березин, Е.Е. Рихтер. – Челябинск: Издательский центр ЮУрГУ, 2011. – 71 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

2. Экспериментальная механика, раздел электромеханические измерения: учебное пособие к лабораторным работам / И.Я. Березин, Е.Е. Рихтер. – Челябинск: Издательский центр ЮУрГУ, 2011. – 71 с.

Электронная учебно-методическая документация

№	Вид литературы	Наименование разработки	Наименование ресурса в электронной форме	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
1	Основная литература	Учебное пособие по курсу "Экспериментальная механика", раздел "Электромеханические измерения" Челябинск, ЮУрГУ, 2011 71с.	Электронный каталог ЮУрГУ	Интернет / Свободный
12.	1 11	Экспериментальная механика [Текст]: учеб. пособие по направлению 151600.62 "Приклад. механика" / С. И. Шульженко; ЮжУрал. гос. ун-т, Каф. Приклад. механика, динамика и прочность машин; ЮУрГУ. 2016 56с.	Электронный каталог ЮУрГУ	Интернет / Свободный
3	Дополнительная литература	др.]. — Электрон. дан. — М. : Машиностроение 2010 — 852 с. — Режим	Электронно- библиотечная система издательства Лань	Интернет / Авторизованный
4	Дополнительная литература	[Электронный ресурс] : учеб. пособие —	Электронно- библиотечная система издательства Лань	Интернет / Авторизованный

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

- 1. Math Works-MATLAB, Simulink 2013b(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

4. -Paint.NET(бессрочно)

Перечень используемых информационных справочных систем:

Нет

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия	031 (1)	лабораторные установки, компьютерная техника
Лабораторные занятия		1. Специализированная учебная лаборатория (ауд. 017) кафедры ПМ и ДПМ, полярископами установкой для исследования методом теневого муара, голографическая установка. 2. Учебно-демонстрационные установки для проведения лабораторных работ, предусмотренных п.5.1. 3. Образцы для лабораторных работ.
Лекции	336 (2)	мультимедийное оборудование для чтения лекций
Практические занятия и семинары		компьютерная техника с программным обеспечением MathCad, MathLab, ANSYSWorkbench