ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Вороннов А. Г. Пользователь, vortorotog

А. Г. Воронцов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М0.03 Дополнительные главы квантовой механики для направления 11.04.04 Электроника и наноэлектроника уровень Магистратура магистерская программа Квантовая инженерия: материалы, электроника, коммуникации и вычисления форма обучения очная кафедра-разработчик Физика наноразмерных систем

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.04.04 Электроника и наноэлектроника, утверждённым приказом Минобрнауки от 22.09.2017 № 959

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, д.физ.-мат.н., доц., профессор

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота Южиг-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Воронцов А. Г. Пользователь: vorontsovag на при д

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога (Ожно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Бескачко В. П. Повъюматель: Безканского Павлователь: Безканского Дата подписания: 69 05 2025

А. Г. Воронцов

В. П. Бескачко

1. Цели и задачи дисциплины

Курс квантовой механики, который читается в бакалавриате на направлении 11.03.04 Электроника и наноэлектроника, охватывает математические основы и основные положения квантовой механики. Однако применение фундаментальных квантовомеханических принципов ограничено решением задач, которые предназначены, скорее, для демонстрации этих принципов в некоторых идеализированных условиях, а не в тех условиях, которые встречаются на практике. Поэтому целью настоящего курса является изучение методов, следующих из первых принципов квантовой механики и позволяющих описывать свойства реальных квантовых систем. Задачами курса является изучение: 1) квантовой теории наблюдаемых и состояний систем, не рассмотренных в курсе основ квантовой механики, 2) приближенных методов решения квантовомеханических задач, встречающихся в наноэлектронике и фотонике.

Краткое содержание дисциплины

Квантовая теория момента импульса, включая спин частиц. Принцип неразличимости элементарных частиц и следствия из него для многочастичных систем. Методы теории возмущений и вариационные методы.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: основные положения квантовой механики,
	их математическую формулировку; уравнения
	движения квантовых систем в формах
	Гейзенберга и Шредингера, приближенные
	методы решения стационарных и
	нестационарных задач (теорию возмущений и
	вариационные метод),
	Умеет: решать типовые задачи квантовой
ПК-1 Проведение теоретических и	механики: о свободной частице, о частице в
экспериментальных исследований в области	потенциальных ямах размерности 1, 2 и 3 разной
создания оборудования для систем квантовых	глубины и формы, прохождения частицей
коммуникаций	потенциальных барьеров, задачу о линейном
	гармоническом осцилляторе путем
	интегрирования стационарного уравнения
	Шредингера и с помощью операторов рождения-
	уничтожения частиц
	Имеет практический опыт: аналитического и
	численного решения простых модельных задач,
	встречающихся в курсах электроники и
	квантовой оптики

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
	Атомистическое моделирование материалов

наноэлектроники и фотоники, Оптические коммуникации,
Квантовые вычисления и коммуникации

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 56,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 1
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	51,5	51,5
Изучение темы 2 "Квантовая теория момента импульса. Спин"	8	8
Подготовка к коллоквиуму по теме 4	2,5	2.5
Подготовка к контрольной работе по теме 3	9	9
Изучение темы 3: "Приближенные методы квантовой механики"	8	8
Изучение темы 4: "Системы многих частиц"	5	5
Подготовка к контрольной работе по теме 2	3	3
Изучение темы 1: "Квантовая механика в 1, 2 и 3 измерениях"	12	12
Подготовка к контрольной работе по теме 1	4	4
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
	-	Всего	Л	П3	ЛР	
1 1	Модели квантовых систем, встречающихся в электронике и фотонике	24	8	16	0	
2	Приближенные методы квантовой механики	14	4	10	0	
3	Системы тождественных частиц	10	4	6	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия					
1	1	Введение: основные положения квантовой механики. Закон сохранения квантовой информации. Уравнение непрерывности для тока вероятности. Квантовая механика в 1, 2 и 3 измерениях.	3				
2	1	Орбитальный момент импульса, операторы компонент момента импульса в декартовой и сферической системах координат. Задача на собственные значения для операторов момента импульса. Спин, операторы спина. Задача на собственные значения для операторов спина. Полный момент импульса системы частиц, правила сложения моментов импульса.	5				
1	2	Стационарная теория возмущений, метод Рэлея-Шредингера. Теория возмущений, зависящих от времени. Вариационные принципы в квантовой механике. Метод Ритца-Хиллерааса. Пример: атом гелия.	4				
1	3	Принцип неразличимости частиц. Свойства симметрии волновой функции системы частиц по отношению к перестановкам пар частиц. Системы фермионов и бозонов. Принцип Паули и следствия из него.	4				

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Одномерные задачи квантовой механики. Свободная частица в представлении Шредингера и Гейзенберга.	3
2	1	Состояния частиц в потенциальных ямах в 1, 2, и 3 измерениях.	3
3	1	Прохождение частиц через потенциальные барьеры, эффекты отражения и туннелирования.	3
4	1	Задача о линейном гармоническом осцилляторе, алгебраический подход: операторы рождения, уничтожения и числа частиц	3
5	1	Момент импульса в квантовой механике. Орбитальный и спиновый момент импульса. Полный момент импульса.	4
1	2	Стационарная теория возмущений Рэлея - Шредингера.	4
2	2	Теория возмущений, зависящих от времени.	3
3	2	Вариационный принцип в квантовой механике. Метод Ритца - Хиллерааса.	3
1	3	Системы многих тождественных частиц. Фермионы и бозоны, свойства волновых функций составленных из них систем. Пример: атом гелия.	3
2	3	Атом водорода и многоэлектронные атомы	3

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов			
Изучение темы 2 "Квантовая теория Флюгге 3. Задачи по квантовой механике.						

момента импульса. Спин"	Т. 1 / 3. Флюгге; пер. с англ. Б. А. Лысова; под ред. А. А. Соколова 2-е изд М.: Издательство ЛКИ, 2008 глава II, с. 135-153 Савельев, И. В. Основы теоретической физики. Том 2. Квантовая механика / И. В. Савельев. — 7-е изд., стер. — Санкт-Петербург: Лань, 2023. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/330521 глава 3, с.76-79 Трясучёв, В. А. Квантовая механика для студентов технических вузов: учебное пособие / В. А. Трясучёв; под редакцией А. В. Попков. — Томск: ТПУ, 2017 // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/106765 — глава 4, с. 36-41 Тарасов, Ю. И. Основы квантовой механики: учебнометодическое пособие / Ю. И. Тарасов, Т. Т. Чен, Е. В. Родионова. — Москва: РТУ МИРЭА, 2021. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/182437 глава 5, с. 98-101		
Подготовка к коллоквиуму по теме 4	см. список литературы для изучения темы 4	1	2,5
Подготовка к контрольной работе по теме 3	См. список литературы для изучения темы 3	1	9
Изучение темы 3: "Приближенные методы квантовой механики"	Савельев, И. В. Основы теоретической физики. Том 2. Квантовая механика / И. В. Савельев. — 7-е изд., стер. — Санкт-Петербург: Лань, 2023. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/330521глава 6, с.120-164 Трясучёв, В. А. Квантовая механика для студентов технических вузов: учебное пособие / В. А. Трясучёв; под редакцией А. В. Попков. — Томск: ТПУ, 2017 // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/106765 — глава XII, с. 120-136 Байков, Ю. А. Квантовая механика: учебное пособие / Ю. А. Байков, В. М. Кузнецов. — 3-е изд. — Москва: Лаборатория знаний, 2020. — 294 с. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/151548 главы 4-5, с. 121-167	1	8
Изучение темы 4: "Системы многих частиц"	Савельев, И. В. Основы теоретической физики. Том 2. Квантовая механика / И. В. Савельев. — 7-е изд., стер. — Санкт-Петербург: Лань, 2023. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/330521глава 9, с.206-247 Байков, Ю. А.	1	5

	Квантовая механика: учебное пособие / Ю. А. Байков, В. М. Кузнецов. — 3-е изд. — Москва: Лаборатория знаний, 2020. — 294 с. // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/151548 глава 7, с. 188-214		
Подготовка к контрольной работе по теме 2	См. список литературы для изучения темы 2	1	3
Изучение темы 1: "Квантовая механика в 1, 2 и 3 измерениях"	Флюгге 3. Задачи по квантовой механике. Т. 1 / 3. Флюгге; пер. с англ. Б. А. Лысова; под ред. А. А. Соколова 2-е изд М.: Издательство ЛКИ, 2008 глава II, с. 40-84 Трясучёв, В. А. Квантовая механика для студентов технических вузов: учебное пособие / В. А. Трясучёв; под редакцией А. В. Попков. — Томск: ТПУ, 2017 // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/106765 — глава X, с. 76-102 Тарасов, Ю. И. Основы квантовой механики: учебнометодическое пособие / Ю. И. Тарасов, Т. Т. Чен, Е. В. Родионова. — Москва: РТУ МИРЭА, 2021. // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/182437 глава 3, с. 55-86	1	12
Подготовка к контрольной работе по теме 1	См. список литературы для изучения темы 1	1	4

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Вес	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	1	Проме- жуточная аттестация	Экзамен по курсу в целом	-	30	Экзаменационное задание содержит три задачи - по одной из разных разделов курса. Каждая задача оценивается максимум в 10 баллов. Максимальный балл за задачу (10) ставится, если: 1) на все вопросы, поставленные в задании, получены правильные ответы, 2) решение сопровождено пояснениями, оправдывающими справедливость избранного пути решения (ссылки на	экзамен

						физические законы, положения, приближения, методы и пр.), а также обозначения для используемых в расчете величин и необходимые графические иллюстрации, 3) вычисления должны быть приведены в явном виде, позволяющем установить происхождение ошибок, если таковые найдутся, 4) текст решения должен быть легко читаем, написан грамотно, ясно и понятно, 5) решение задачи должно завершаться анализом результатов. Итоговый балл за экзаменационное задание представляет собой сумму баллов, начисленных за каждую задачу.	
2	1	Текущий контроль	Контрольная работа по разделу 1	1	10	Контрольная работа содержит одну (на 10 баллов) или две задачи (по 5 баллов) в зависимости от трудоемкости их решения. Максимальный балл (10) ставится, если: 1) на все вопросы, поставленные в задании, получены правильные ответы, 2) решение сопровождено пояснениями, оправдывающими справедливость избранного пути решения (ссылки на физические законы, положения, приближения, методы и пр.), а также обозначения для используемых в расчете величин и необходимые графические иллюстрации, 3) вычисления должны быть приведены в явном виде, позволяющем установить происхождение ошибок, если таковые найдутся, 4) текст решения должен быть легко читаем, написан грамотно, ясно и понятно, 5) решение задачи должно завершаться анализом результатов.	экзамен
3	1	Текущий контроль	Контрольная работа по разделу 2	1	10	Порядок начисления баллов тот же, что и при оценке контрольной работы N1	экзамен
4	1	Текущий контроль	Контрольная работа по разделу 3	1	10	Порядок начисления баллов тот же, что и при оценке контрольной работы N1	экзамен
5	1	Текущий контроль	Коллоквиум по разделу 4	1	10	Задание на коллоквиум содержит две задачи, не требующих сложных вычислений, но требующих знания основных принципов физики многочастичных систем и умения применять их в простейших ситуациях. При начислении баллов используются те же правила, что и при оценке результатов контрольных работ.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	Мероприятия текущего контроля проводятся в письменной форме по завершению изучения соответствующего раздела курса во время, отведенное для практических занятий. Время на выполнение работы 1 академический час. Мероприятие промежуточного контроля (экзамен) проводятся по расписанию экзаменационной сессии. Время на выполнение экзаменационного задания 2 академических часа.	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения		№ КМ		M
	1 to juintal out to man	1	2	3 4	15
11K-1	Знает: основные положения квантовой механики, их математическую формулировку; уравнения движения квантовых систем в формах Гейзенберга и Шредингера, приближенные методы решения стационарных и нестационарных задач (теорию возмущений и вариационные метод),	+	+-	+-	H
ПК-1	Умеет: решать типовые задачи квантовой механики: о свободной частице, о частице в потенциальных ямах размерности 1, 2 и 3 разной глубины и формы, прохождения частицей потенциальных барьеров, задачу о линейном гармоническом осцилляторе путем интегрирования стационарного уравнения Шредингера и с помощью операторов рождения-уничтожения частиц	+	+	_	F
IIIK - I	Имеет практический опыт: аналитического и численного решения простых модельных задач, встречающихся в курсах электроники и квантовой оптики	+	+		+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания для студентов по освоению дисциплины

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания для студентов по освоению дисциплины

Электронная учебно-методическая документация

	литературы	Наименование	
$N_{\underline{0}}$		ресурса в	Библиографическое описание
		электронной форме	

1	Основная литература	ЭБС издательства Лань	Байков, Ю. А. Квантовая механика: учебное пособие / Ю. А. Байков, В. М. Кузнецов. — 3-е изд. — Москва: Лаборатория знаний, 2020. — 294 с. https://e.lanbook.com/book/151548
2	Основная литература	Лань	Блохинцев, Д. И. Основы квантовой механики: учебное пособие / Д. И. Блохинцев. — 7-е изд., стер. — Санкт-Петербург: Лань, 2022. — 672 с. https://e.lanbook.com/book/210197
3	Основная литература	ЭБС издательства Лань	Савельев, И. В. Основы теоретической физики. В 2 томах. Том 2. Квантовая механика / И. В. Савельев. — 7-е изд., стер. — Санкт-Петербург: Лань, 2023. — 432 с. https://e.lanbook.com/book/330521

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Не предусмотрено