ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель специальности

Электронный документ, подписанный ПЭП, хранится в системе электронного документоборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ваулин С. Д. Пользователь: vaulined Дила подписания; 196 5.022

С. Д. Ваулин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.11 Физика для специальности 17.05.01 Боеприпасы и взрыватели уровень Специалитет форма обучения очная кафедра-разработчик Оптоинформатика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 17.05.01 Боеприпасы и взрыватели, утверждённым приказом Минобрнауки от 18.08.2020 № 1055

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.физ.-мат.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожне-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кундикова Н. Д. Пользователь: kundikovand Гата подписания: 1905.2022

Электронный документ, подписанный ПЭП, хранится в системе межгронного документооборога (Ожно-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому видан: Пультивов А. В Пользователь: Мијднома Пата подписания: 19 05 2022

Н. Д. Кундикова

А. А. Шульгинов

1. Цели и задачи дисциплины

Физика создает универсальную базу для изучения общепрофессиональных и специальных дисциплин, закладывает фундамент последующего обучения в магистратуре, аспирантуре. Она даёт цельное представление о физических законах окружающего мира в их единстве и взаимосвязи, вооружает бакалавров необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах. Задачами курса физики являются: • изучение законов окружающего мира в их взаимосвязи; • овладение фундаментальными принципами и методами решения научно-технических задач; • формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми бакалавру придется сталкиваться при создании или использовании новой техники и новых технологий; • освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных профессиональных задач; • формирование у студентов основ естественнонаучной картины мира; • ознакомление студентов с историей и логикой развития физики и основных её открытий.

Краткое содержание дисциплины

Дисциплина «Физика» включает в себя следующие основные разделы: механика, термодинамика и молекулярная физика, электричество и магнетизм, колебания и волны, оптика, атомная физика, ядерная физика.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ОПК-2 Способен самостоятельно применять приобретенные математические, естественнонаучные, социально-экономические и профессиональные знания для решения инженерных задач	Знает: законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач; историю и логику развития физики и основных ее открытий. Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой техники и новых технологий. Имеет практический опыт: владения методами решения физических задач, теоретического и экспериментального исследования.
ОПК-11 Способен ориентироваться в проблемных ситуациях и решать сложные вопросы проектирования, производства, испытания и эксплуатации боеприпасов и взрывателей различного типа и назначения	Знает: законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач. Историю и логику развития физики и основных

ее открытий. Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой
техники и новых технологий. Имеет практический опыт: решения физических задач, теоретического и экспериментального исследования.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
1.О.10.02 Математический анализ, 1.О.14 Начертательная геометрия и инженерная графика, 1.О.10.01 Алгебра и геометрия	1.О.23 Электрооборудование ракетно-космической техники, 1.О.40 Обработка металлов давлением, 1.О.44 Боевая эффективность средств поражения, 1.О.19 Электротехника и электроника, 1.О.41 Механика сплошных сред, 1.О.20 Термодинамика и теплопередача, 1.О.18 Материаловедение, 1.О.21 Теория автоматического управления, 1.О.12 Химия, 1.О.17 Метрология, стандартизация и сертификация, Производственная практика, эксплуатационная практика (4 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: основные термины и понятия линейной
	алгебры и аналитической геометрии; наиболее
	важные приложения линейной алгебры и
	аналитической геометрии в различных областях
	других естественно-научных и
	профессиональных дисциплин. Умеет:
	производить основные операции над матрицами,
	вычислять определители, исследовать и решать
	системы линейных уравнений, проводить
1.О.10.01 Алгебра и геометрия	основные операции над векторами в
	координатах, применять формулы для
	вычисления расстояний, углов, площадей и
	объемов различных фигур, составлять уравнения
	фигур 1-го и 2-го порядка на плоскости и в
	пространстве. Имеет практический опыт:
	методом приведения определителя к
	треугольному виду, методом Крамера и методом
	Гаусса для решения систем линейных уравнений,
	координатным методом изучения фигур на

плоскости и в пространств. Знает: основы построения чертежа, закономерности получения изображений; правила выполнения чертежей деталей, сборочных единиц и элементов конструкций; требования стандартов Единой системы конструкторской документации (ЕСКД) и Единой системы технической документации (ЕСТД) к оформлению и составлению чертежей, методы решения инженерно-геометрических задач на чертеже., основы построения чертежа, закономерности получения изображений; правила выполнения чертежей деталей, сборочных единиц и элементов конструкций; требования стандартов Единой системы конструкторской документации (ЕСКД) и Единой системы технической документации (ЕСТД) к оформлению и составлению чертежей, методы решения инженерно-геометрических задач на чертеже. Умеет: решать геометрические задачи посредством чертежа; анализировать форму предметов по их чертежам, строить и читать чертежи; решать инженерногеометрические задачи на чертеже; применять нормативные документы и государственные 1.О.14 Начертательная геометрия и инженерная стандарты, необходимые для оформления графика чертежей и другой конструкторскотехнологической документации; уметь применять ручные (карандаш и бумага) для построения чертежей и изучения пространственных свойств геометрических объектов., решать геометрические задачи посредством чертежа; анализировать форму предметов по их чертежам, строить и читать чертежи; решать инженерно-геометрические задачи на чертеже; применять нормативные документы и государственные стандарты, необходимые для оформления чертежей и другой конструкторско-технологической документации; уметь применять ручные (карандаш и бумага) для построения чертежей и изучения пространственных свойств геометрических объектов. Имеет практический опыт: построения и чтения чертежа; выполнения проекционных чертежей и оформления конструкторской документации в соответствии с ЕСКД., построения и чтения чертежа; выполнения проекционных чертежей и оформления конструкторской документации в соответствии с ЕСКД. Знает: основные положения, законы, основные формулы и методы решения задач разделов дисциплин математического анализа., основные 1.О.10.02 Математический анализ математические положения, законы, основные формулы и методы решения задач разделов дисциплин математического анализа., основные

математические положения, законы, основные формулы и методы решения задач разделов дисциплин математического анализа. Умеет: самостоятельно работать с учебной, справочной и учебно-методической литературой; доказывать теоремы, вычислять определенные интегралы по фигуре; характеризовать векторные поля; находить циркуляцию и поток векторного поля; применять интегралы к решению простых прикладных задач; составлять математические модели простых задач реальных процессов и проводить их анализ., самостоятельно работать с учебной, справочной и учебно-методической литературой; доказывать теоремы, вычислять определенные интегралы по фигуре; характеризовать векторные поля; находить циркуляцию и поток векторного поля; применять интегралы к решению простых прикладных задач; составлять математические модели простых задач реальных процессов и проводить их анализ., самостоятельно работать с учебной, справочной и учебно-методической литературой; доказывать теоремы, вычислять определенные интегралы по фигуре; характеризовать векторные поля; находить циркуляцию и поток векторного поля; применять интегралы к решению простых прикладных задач; составлять математические модели простых задач реальных процессов и проводить их анализ. Имеет практический опыт: владения навыками работы с учебной и учебно-методической литературой; навыками употребления математической символики для выражения количественных и качественных отношений объектов; навыками символьных преобразований математических выражений., владения навыками работы с учебной и учебно-методической литературой; навыками употребления математической символики для выражения количественных и качественных отношений объектов; навыками символьных преобразований математических выражений., владения навыками работы с учебной и учебно-методической литературой; навыками употребления математической символики для выражения количественных и качественных отношений объектов; навыками символьных преобразований математических выражений.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 11 з.е., 396 ч., 203 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам в часах		
Вид учесной расоты	часов	Номер с	еместра	
		2	3	
Общая трудоёмкость дисциплины	396	180	216	
Аудиторные занятия:	176	80	96	
Лекции (Л)	80	32	48	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	48	24	24	
Лабораторные работы (ЛР)	48	24	24	
Самостоятельная работа (СРС)	193	87,5	105,5	
с применением дистанционных образовательных технологий	0			
Решение домашних заданий	30	15	15	
Подготовка к контрольным работам	30	15	15	
Подготовка к лабораторным работам	60	30	30	
Подготовка к экзамену	73	27.5	45.5	
Консультации и промежуточная аттестация	27	12,5	14,5	
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен	экзамен	

5. Содержание дисциплины

$N_{\underline{0}}$	Науманарачна раздалар дианилини	Объем аудиторных занятий по видам в часах				
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР	
1	Механика	32	12	12	8	
2	Колебания и волны	12	6	2	4	
3	Термодинамика и молекулярная физика	10	4	2	4	
4	Электричество и магнетизм	72	32	16	24	
5	Оптика	32	16	10	6	
6	Атомная физика	12	8	4	0	
7	Ядерная физика	6	2	2	2	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Введение. Предмет физики. Методы физических исследований: наблюдение, гипотеза, эксперимент, теория. Влияние физики на развитие техники и влияние техники на развитие физики. Связь физики с философией и другими науками. Кинематика материальной точки. Механическое движение как простейшая форма движения. Элементы кинематики материальной точки и поступательного движения абсолютно твёрдого тела. Скорость и ускорение, нормальное и тангенциальное ускорения, радиус кривизны траектории	2
2	1	Динамика. Основная задача динамики. Масса, импульс, сила. Динамика материальной точки и поступательного движения твёрдого тела. Закон инерции и инерциальные системы отсчёта. Законы Ньютона и границы их применимости. Закон всемирного тяготения	2
3	1	Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения. Закон сохранения импульса и его связь с однородностью пространства. Неинерциальные системы отсчёта	2

4	1	Энергия. Закон сохранения механической энергии. Работа силы и мощность. Энергия как универсальная мера движения и взаимодействия. Кинетическая энергия механической системы и её связь с работой внешних и внутренних сил. Поле, как форма материи, осуществляющая силовое взаимодействие между частицами вещества. Силы консервативные и диссипативные. Потенциальная энергия материальной точки во внешнем силовом поле. Связь потенциальной энергии с силой, действующей на материальную точку. Закон сохранения механической энергии. Удар абсолютно упругих и неупругих тел	2
5	1	Вращательное движение. Кинематика вращательного движения. Угловой путь, угловое перемещение, угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями точек вращающегося тела	2
6	1	Динамика вращательного движения. Момент силы и момент импульса относительно полюса и неподвижной оси вращения. Уравнение динамики вращательного движения относительно оси. Момент инерции тела относительно оси. Теорема Штейнера. Закон сохранения момента импульса и его связь с изотропностью пространства. Работа момента силы и кинетическая энергия вращающегося тела. Плоское движение твёрдого тела. Теория гироскопа	2
7	2	Механические колебания. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний. Пружинный, физический и математический маятники. Энергия гармонических колебаний. Ангармонический осциллятор	2
8	2	Дифференциальное уравнение затухающих колебаний и его решение. Апериодический процесс. Вынужденные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс. Сложение гармонических колебаний одного направления одинаковой частоты. Биения. Сложения взаимно перпендикулярных колебаний	2
9	2	Механические волны. Механизм образования механических волн в упругой среде. Уравнение бегущей волны. Волновое уравнение. Длина волны и волновое число. Фазовая скорость. Энергия волны. Поток энергии. Принцип суперпозиции волн и границы его применимости. Волновой пакет. Групповая скорость. Интерференция волн. Образование стоячей волны. Уравнение стоячей волны и его анализ	2
10	3	Статистический и термодинамический методы исследования систем. Термодинамическая система и её параметры. Молекулярная физика. Идеальный газ. Уравнение состояния идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование температуры. Средняя квадратичная скорость. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул	2
11	3	I начало термодинамики. Внутренняя энергия системы. Работа газа. Графическое изображение термодинамических процессов и работы. Равновесные и неравновесные процессы. Количество теплоты. І начало термодинамики. Теплоёмкость многоатомных газов. Закон Майера. Применение І начала термодинамики к изопроцессам. Уравнение адиабаты. ІІ начало термодинамики. Обратимые и необратимые процессы. Циклы. Тепловые двигатели и холодильные машины. Цикл Карно, к.п.д. цикла. ІІ начало термодинамики	2
12	4	Электростатика. Два рода электрических зарядов. Дискретность заряда. Закон Кулона. Закон сохранения электрического заряда. Электростатическое поле. Напряжённость электрического поля. Графическое изображение поля. Принцип суперпозиции для напряжённости	2
13	4	Работа сил электрического поля по перемещению заряда. Потенциал. Связь между напряжённостью и потенциалом. Эквипотенциальные поверхности. Энергия системы неподвижных зарядов	2

14	4	Поток вектора напряжённости электрического поля. Теорема Гаусса для электростатического поля в вакууме и её применение для расчёта электрических полей	2
15	4	Проводники в электрическом поле. Электроёмкость уединённого проводника и конденсатора. Энергия заряженного проводника, конденсатора, электрического поля. Объёмная плотность энергии	2
16	4	Постоянный электрический ток. Условия существования и характеристики постоянного тока. Разность потенциалов, ЭДС, напряжение. Сопротивление проводников. Закон Ома в дифференциальной и интегральной формах для однородного и неоднородного участков цепи. Закон Ома для замкнутой цепи. Работа и мощность тока. Закон Джоуля-Ленца	2
17	4	Магнитное поле. Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Графическое изображение магнитного поля. Закон Био-Савара-Лапласа. Принцип суперпозиции. Магнитное поле прямолинейного проводника с током	2
18	4	Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. Циркуляция вектора магнитной индукции. Закон полного тока	2
19	4	Действие магнитного поля на проводник с током. Закон Ампера. Магнитный дипольный момент. Контур с током в однородном и неоднородном магнитном поле. Работа по перемещению проводника с током и контура с током в магнитном поле	2
20	4	Действие магнитного поля на движущийся заряд. Сила Лоренца. Относительность электрических и магнитных полей	2
21	4	Магнитное поле в веществе. Магнитная восприимчивость и магнитная проницаемость. Диа- и парамагнетики. Ферромагнетики и их свойства. Вектор намагниченности и его связь с плотностью молекулярных токов. Напряжённость магнитного поля	2
22	4	Явление электромагнитной индукции. Опыт Фарадея. Правило Ленца. Закон электромагнитной индукции	2
23	4	Явление самоиндукции и взаимной индукции. Индуктивность и взаимная индуктивность. Токи замыкания и размыкания. Энергия магнитного поля. Объёмная плотность энергии магнитного поля	2
24	4	Электромагнитные колебания и волны. Свободные незатухающие колебания. Идеальный колебательный контур. Дифференциальное уравнение незатухающих колебаний и его решение. Формула Томсона. Энергия колебаний	2
25	4	Реальный колебательный контур. Дифференциальное уравнение затухающих колебаний и его решение. Параметры затухания. Апериодический процесс. Вынужденные электромагнитные колебания. Резонанс	2
26	4	Основы теории Максвелла для электромагнитного поля. Ток смещения. Уравнения Максвелла в интегральной и дифференциальной форме. Дифференциальное уравнение электромагнитной волны. Основные свойства электромагнитных волн	2
27	4	Фазовая и групповая скорости волны. Волновое число и волновой вектор. Монохроматическая волна. Перенос энергии электромагнитной волной. Вектор Умова-Пойнтинга. Поляризация электромагнитной волны. Эффект Доплера	2
28	5	Опыты Френеля и Ллойда. Интерферометр Майкельсона. Многолучевая интерференция. Интерферометр Фабри-Перо. Временная и пространственная когерентность. Время и длина когерентности	2
29	5	Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера	2
30	5	Дифракционная решётка как спектральный прибор. Разрешающая	2

	ı	T	1
		способность. Дифракция на пространственной решётке. Формула Вульфа- Брэгга. Исследование структуры кристаллов. Голография	
31	5	Поляризация света. Форма и степень поляризации монохроматических волн. Получение и анализ линейно-поляризованного света. Закон Малюса. Линейное двулучепреломление. Прохождение света через линейные фазовые пластинки	2
32	5	Электромагнитные волны в веществе. Нормальная и аномальная дисперсия света. Поглощение и рассеяние света. Искусственная оптическая анизотропия. Фотоупругость. Электрооптические и магнитооптические явления Отражение и преломление света на границе раздела двух диэлектриков. Формулы Френеля. Эффект Брюстера. Полное отражение и его применение в технике	2
33	5	Тепловое излучение. Тепловое излучение и люминесценция. Спектральные характеристики теплового излучения. Законы Кирхгофа, Стефана-Больцмана и закон смещения Вина. Абсолютно чёрное тело. Формула Релея-Джинса и «ультрафиолетовая катастрофа»	2
34	5	Гипотеза квантов. Формула Планка. Квантовое объяснение законов теплового излучения. Корпускулярно-волновой дуализм света	2
35	5	Квантовые свойства света. Фотоны. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Обратный фотоэффект. Давление света. Опыт Лебедева. Эффект Комптона. Вывод формулы Комптона	2
36	6	Планетарная модель атома. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Эмпирические закономерности в атомных спектрах. Формула Бальмера. Линейчатые спектры атомов. Комбинационный принцип Ритца	2
37	6	Элементы квантовой механики. Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер	2
38	6	Квантово-механическое описание атомов. Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов	2
39	6	Опыт Штерна и Герлаха. Эффект Зеемана. Строение атомов и периодическая система химических элементов Д.И. Менделеева. Порядок заполнения электронных оболочек. Принцип Паули	2
40	7	Атомное ядро. Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Радиоактивность. Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Детектирование ядерных излучений. Понятие о дозиметрии и защите	2

5.2. Практические занятия, семинары

№	№	Наименование или краткое солержание практинеского занятия, семинара	Кол-во
занятия	раздела	аименование или краткое содержание практического занятия, семинара ча	
1	1	Кинематика материальной точки	2
2	1	Динамика материальной точки	2
3	1	Закон сохранения импульса	2
4	1	Работа, энергия. Закон сохранения механической энергии	2
5	1	Кинематика и динамика вращательного движения	2
6	1	Закон сохранения момента импульса. Энергия вращательного движения	2
7	2	Кинематика и динамика колебаний	2

8	3	Газовые законы. І начало термодинамики	2
9	4	Напряжённость и потенциал электрического поля	2
10	4	Теорема Гаусса для электрического поля	2
11	4	Электроёмкость. Энергия электрического поля	2
12	4	Законы постоянного тока	2
13	4	Закон Био-Савара-Лапласа	2
14	4	Закон Ампера. Сила Лоренца	2
15	4	Магнитный поток	2
16	4	Закон электромагнитной индукции	2
17	5	Интерференция света	2
18	5	Дифракция света	2
19	5	Поляризация света	2
20	5	Законы теплового излучения	2
21	5	Квантовые свойства света	2
22	6	Атом водорода	2
23	6	Квантовая физика	2
24	7	Закон радиоактивного распада	2

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во
1	1	Вводная беседа: техника безопасности. ВВОДНАЯ РАБОТА. Определение ускорения свободного падения.	<u>часов</u> 2
2	1	ЛР № М-1. Изучение закона сохранения импульса.	2
3	1	Выполняется одна работа: ЛР № М-2. Определение скорости пули; ЛР № М-8. Закон сохранения момента импульса.	2
4	1	ЛР № М-3. Изучение закона динамики вращательного движения с помощью маятника Обербека.	2
5	2	Выполняется одна работа: ЛР № М-7. Определение ускорения свободного падения с помощью оборотного маятника; ЛР № М-9. Изучение вынужденных колебаний; ЛР № М-12. Изучение затухающих колебаний.	2
6	2	Выполняется одна работа: ЛР № М-10. Изучение собственных колебаний струны; ЛР № М-11. Изучение звуковых волн в воздухе.	2
7	3	Выполняется одна работа: ЛР № M-14. Определение коэффициента вязкости жидкости; ЛР № M-15. Определение коэффициента вязкости воздуха.	2
8	3	ЛР № М-16. Определение отношения теплоёмкостей воздуха.	2
9	4	ЛР № Э-1. Изучение электростатического поля методом моделирования.	2
10	4	ЛР № Э-2. Определение электроёмкости конденсатора.	2
11	4	ЛР № Э-3. Определение удельного сопротивления проводника.	2
12	4	ЛР № Э-4. Изучение температурной зависимости сопротивления металла и полупроводника.	2
13	4	ЛР № Э-5. Определение параметров цепи, содержащей сопротивление и электроёмкость	2
14	4	ЛР № Э-6. Определение удельного заряда электрона методом магнетрона.	2
15	4	ЛР № Э-7. Изучение эффекта Холла в полупроводниках.	2
16	4	ЛР № Э-8. Изучение свойств ферромагнетиков с помощью петли гистерезиса.	2
17	4	ЛР № Э-11. Определение точки Кюри феррита.	2

18	4	ЛР № Э-12. Изучение электромагнитных затухающих колебаний.	2
19, 20	4	ЛР № Э-13. Исследование явления резонанса в электрических цепях переменного тока.	4
21	5	Выполняется одна работа: ЛР № О-1. Определение радиуса кривизны линзы с помощью колец Ньютона; ЛР № О-3. Измерение показателя преломления воздуха с помощью интерферометра.	2
22	5	Выполняется одна работа: ЛР № О-2. Измерение длины световой волны с помощью дифракционной решетки; ЛР № О-4. Определение угла полной поляризации и проверка закона Малюса.	2
23	5	Выполняется одна работа: ЛР № О-7. Исследование спектра испускания твёрдых тел. ЛР № О-8. Снятие спектральной характеристики фотоэлемента и определение работы выхода; ЛР № О-13. Исследование внешнего фотоэффекта	2
24	7	Выполняется одна работа: ЛР № О-10. Изучение альфа-распада; ЛР № О-11. Определение верхней границы энергии бета-спектра	2

5.4. Самостоятельная работа студента

	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Решение домашних заданий	Пособия [7, 8, 10] из раздела "Учебно- методические материалы в электронном виде"	3	15
Подготовка к контрольным работам	Пособия [7-10] из раздела "Учебно- методические материалы в электронном виде"	3	15
Подготовка к контрольным работам	Пособия [7-10] из раздела "Учебно- методические материалы в электронном виде"	2	15
Подготовка к лабораторным работам	Пособия [11-16] из раздела "Учебно- методические материалы в электронном виде"	3	30
Решение домашних заданий	Пособия [8-10] из раздела "Учебно- методические материалы в электронном виде"	2	15
Подготовка к экзамену	Учебники [1-6] из раздела "Учебно- методические материалы в электронном виде"	3	45,5
Подготовка к лабораторным работам	Пособия [11-16] из раздела "Учебно- методические материалы в электронном виде"	2	30
Подготовка к экзамену	Учебники [1-6] из раздела "Учебно- методические материалы в электронном виде"	2	27,5

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	2	Текущий контроль	ДЗ 1-4	1		1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
2	2	Текущий контроль	ДЗ 5-7	1		1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
3	2	Текущий контроль	ДЗ 8-10	1		1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
4	2	Текущий контроль	KP 1	3	0	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
5	2	Текущий контроль	KP 2	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
6	2	Текущий контроль	KP 3	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
7	2	Текущий контроль	KP 4	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
8	2	Текущий контроль	KP 5	3		В контрольной работе 1 теоретический вопрос и 1 задача на тему лабораторной работы. Каждый вопрос оценивается на 5 баллов в зависимости от полноты его раскрытия и точности расчётов.	экзамен

						Проверка письменных отчётов по	
9	2	Текущий контроль	ЛР 01	1	1	лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
10	2	Текущий контроль	ЛР 02	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
11	2	Текущий контроль	ЛР 03	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
12	2	Текущий контроль	ЛР 04	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перел	экзамен

						если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
13	2	Текущий контроль	ЛР 05	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
14	2	Текущий контроль	ЛР 06	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
15	2	Текущий контроль	ЛР 07	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	

16	2	Текущий контроль	ЛР 08	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
17	2	Текущий контроль	ЛР 09	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
18	2	Текущий контроль	ЛР 10	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
19	2	Проме- жуточная аттестация	Экзамен	-	11	Каждый вопрос оценивается 0 или 1 балл. 1 балл ставится за правильный ответ. Задача оценивается на 3 балла. 1 балл ставится, если определены искомые величины, 2 балла, если определена средняя величина и её случайная погрешность, 3 балла, если оценена полная погрешность величины. Максимальное количество баллов по	экзамен

						билету - 11.	
20	3	Текущий контроль	ДЗ 1-4	1	4	1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
21	3	Текущий контроль	ДЗ 5-7	1	3	1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
22	3	Текущий контроль	ДЗ 8-10	1	3	1 балл начисляется при наличии всех правильно решённых задач. 0 баллов, если есть существенные ошибки хотя бы в одной задаче.	экзамен
23	3	Текущий контроль	KP 1	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
24	3	Текущий контроль	KP 2	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
25	3	Текущий контроль	KP 3	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
26	3	Текущий контроль	KP 4	3	6	В контрольной работе 2 задачи. Каждая задача оценивается на 3 балла. 1 балл ставится, если студент написал правильные формулы для решения задачи, 2 балла - если, кроме того, сделаны верные преобразования, 3 балла - если получен правильный числовой ответ.	экзамен
27	3	Текущий контроль	KP 5	3	10	В контрольной работе 2 теоретических вопроса. Каждый вопрос оценивается на 5 баллов в зависимости от полноты его раскрытия.	экзамен
28	3	Текущий контроль	ЛР 01	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она	экзамен

						возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
29	3	Текущий контроль	ЛР 02	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
30	3	Текущий контроль	ЛР 03	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
31	3	Текущий контроль	ЛР 04	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные	экзамен

						расчёты или измерения, за неверный вывод или его отсутствие.	
32	3	Текущий контроль	ЛР 05	1		Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
33	3	Текущий контроль	ЛР 06	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
34	3	Текущий контроль	ЛР 07	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	экзамен
35	3	Текущий контроль	ЛР 08	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она	экзамен

						возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
36	3	Текущий контроль	ЛР 09	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
37	3	Текущий контроль	ЛР 10	1	1	Проверка письменных отчётов по лабораторным работам. Студент должен сдать отчёт по лабораторной работе на проверку на следующем занятии и перед началом выполнения следующей работы. Если работа не зачтена, то она возвращается студенту на доработку. За каждый сданный отчёт ставится 1 балл, если правильно оформлен отчёт, содержащий верные результаты измерений и расчётов, а также точные выводы, и 0 баллов, если отчёт оформлен не по принятым правилам, указанным в пособиях по лабораторным работам, за неправильные расчёты или измерения, за неверный вывод или его отсутствие.	
38	3	Проме- жуточная аттестация	Экзамен	-	10	За каждый правильный ответ начисляется 1 балл.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	вопросов, на которые он должен дать письменный ответ. По	В соответствии с пп. 2.5, 2.6 Положения

экзамен	вопросов, на которые он должен дать письменный ответ. По	В соответствии с пп. 2.5, 2.6
	окончании экзамена проводится апелляция. Время	Попожония
	проведения письменной части - 2 академических часа.	Положения

6.3. Паспорт фонда оценочных средств

I/ 0	Результаты																							Ŋ	ſ <u>o</u> I	ζN	[4
Компетенции	обучения	1	2	3	4	5	6	7	8	9	10	1 :	1	2	13	14	4 1	5	16	17	118	8 1	9	20	21	22	23	3 24	12:	5 2	26	27	28	29)3()[3
	Знает: законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира; основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач; историю и логику развития физики и основных ее открытий.	-+-	+	+	+	+	+		+													T	+	+	+	+	+	+	+	-	+	+				
ОПК-2	Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой техники и новых технологий.	+	+	+	+	+	+	+-	+													+		+	+	+	+	+	+	-	+	+				
ОПК-2	Имеет практический опыт: владения методами решения физических задач, теоретического и экспериментального исследования.	+	+	+	+	+	+	+-	+	+	+	+	+	_	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ОПК-11	Знает: законы окружающего мира и их взаимосвязи; основы естественнонаучной картины мира;	+	+	+	+	+	+	+-	+													+	-	+	+	+	+	+	+		+	+				

								_									_											
	основные физические теории и пределы их применимости для описания явлений природы и решения современных и перспективных профессиональных задач. Историю и																											
	логику развития физики и основных ее открытий.																											
ОПК-11	Умеет: применять положения фундаментальной физики к грамотному научному анализу ситуаций, с которыми придется сталкиваться при создании, развитии или использовании новой техники и новых технологий.	+++	+	+	+-+	-+-	+										+	+	+	+	+	+	+	+	+			
ОПК-11	Имеет практический опыт: решения физических задач, теоретического и экспериментального исследования.	 -	+	+	⊢ -		+	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. График сдачи заданий

из них: учебно-методическое обеспечение самостоятельной работы студента:

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	оиолиотечная система излательства	Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. — 15-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 1: Механика. Молекулярная физика — 2019. — 436 с. https://e.lanbook.com/book/113944
2	Основная литература	оиолиотечная система изпательства	Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. — 15-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 2: Электричество и магнетизм. Волны. Оптика — 2019. — 500 c. https://e.lanbook.com/book/113945
3	Основная литература	библиотечная система издательства	Савельев, И.В. Курс общей физики: учебное пособие: в 3 томах / И.В. Савельев. — 13-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц — 2019. — 320 с. https://e.lanbook.com/book/123463
4	Дополнительная литература	система издательства	Зисман, Г.А. Курс общей физики: учебное пособие: в 3 томах / Г.А. Зисман, О.М. Тодес. — 8-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 1: Механика. Молекулярная физика. Колебания и волны — 2019. — 340 с. https://e.lanbook.com/book/115200
5	Дополнительная литература	Электронно- библиотечная система издательства Лань	Зисман, Г.А. Курс общей физики: учебное пособие: в 3 томах / Г.А. Зисман, О.М. Тодес. — 8-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 2: Электричество и магнетизм — 2019. — 360 c. https://e.lanbook.com/book/115201
6	дополнительная питература	библиотечная система издательства	Зисман, Г.А. Курс общей физики: учебное пособие: в 3 томах / Г.А. Зисман, О.М. Тодес. — 7-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 3: Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц — 2019. https://e.lanbook.com/book/115202
7	Основная литература	Электронный каталог ЮУрГУ	Шульгинов, А.А. Механика и термодинамика: рабочая программа и задания для студентов МТ и АТ факультетов / А.А. Шульгинов, Д.Г. Кожевников, А.Я. Лейви; под. ред. А.А. Шульгинова. – Челябинск: Издательский центр ЮУрГУ, 2012. – 50 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD&key=000492995
8	Основная литература	Электронный каталог ЮУрГУ	Шульгинов, А.А. Электричество и магнетизм: Учебное пособие по решению задач для студентов технических специальностей / А.А. Шульгинов, Д.Г. Кожевников, А.Я. Лейви, Е.Л. Шахин; – Челябинск: Издательский центр ЮУрГУ, 2021. – 50 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD&key=000569588
9	Основная литература	Электронный каталог ЮУрГУ	Шульгинов, А. А. Оптика, атомная и ядерная физика: рабочая программа и задания для студентов МТ и АТ факультетов /А.А. Шульгинов, Д.Г. Кожевников, А.Я. Лейви; под. ред. А.А. Шульгинова. – Челябинск: Издательский центр ЮУрГУ, 2012. – 37 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD1&key=000491096
10	Дополнительная		Калашников, Н.П. Общая физика. Сборник заданий и

		I	
	1 71		руководство к решению задач: учебное пособие / Н.П.
			Калашников, С.С. Муравьев-Смирнов. — 3-е изд., стер. — Санкт-
			Петербург: Лань, 2020. — 524 с.
		Лань	https://e.lanbook.com/book/130574
11	питепатипа	Электронный каталог ЮУрГУ	Гуревич, С.Ю. Механика. Молекулярная физика. Термодинамика: учебное пособие по выполнению лабораторных работ / С.Ю. Гуревич, Е.В. Голубев, Е.Л. Шахин. – Челябинск: Изд-во ЮУрГУ, 2017. – 110 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD&key=000554659
12	питепатупа	электронный каталог ЮУрГУ	Шульгинов, А.А. Электричество и магнетизм: учеб. пособие для выполнения лаб. работ/ А.А. Шульгинов, Ю.В. Петров Челябинск: Издательский Центр ЮУрГУ, 2018 185 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD&key=000566132
13	питепатупа	Katajior IOVnEV	Герасимов, А.М. Оптика и ядерная физика: учеб. пособие для выполнения лаб. работ / А.М. Герасимов, В.Ф. Подзерко, В.А. Старухин Челябинск: Издательский Центр ЮУрГУ, 2018 79 с. http://www.lib.susu.ru/ftd?base=SUSU_METHOD&key=000566133
14	Методические пособия для самостоятельной работы студента	методические материалы	Механика. Молекулярная физика. Термодинамика. Бланки отчётов по лабораторным работам. http://www.phys.susu.ru/lit/reports1.zip
15	Методические пособия для самостоятельной работы студента	_	Электричество и магнетизм. Бланки отчётов по лабораторным paботам. http://phys.susu.ru/lit/reports2.zip
16		материалы	Оптика и ядерная физика. Бланки отчётов по лабораторным работам. http://www.phys.susu.ru/lit/reports3.zip

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
	204 (3г)	Демонстрационные установки: 1. кресло Жуковского; 2. продольные и поперечные волны; 3. биения; 4. распределение заряда по поверхности проводника; 5. электрическое поле конденсатора; 6. электрический ветер; 6. сила Ампера; 7. индукционный ток; 8. «послушная» катушка; 9. экстраток при замыкании и размыкании цепи; 10. свойства электромагнитных волн; 11. опыты Столетова.
1 1	339 (3)	Физический практикум "Электричество и магнетизм"
1 1	348 (3)	Физический практикум "Оптика"

Лабораторные 350 азанятия (3) Физический практикум «Механика и молекулярная физика»