ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДА	Ю:
Декан факули	ьтета
Материалове	дение и
металлургич	еские технологии
	М. А. Иванов
11.12.2018	

РАБОЧАЯ ПРОГРАММА к ОП ВО от 28.11.2018 №007-03-1862

дисциплины В.1.08 Современные методы исследования структуры материалов для направления 22.04.01 Материаловедение и технологии материалов уровень магистр тип программы Прикладная магистратура магистерская программа Материаловедение: структура и свойства материалов форма обучения очная кафедра-разработчик Материаловедение и физико-химия материалов

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 22.04.01 Материаловедение и технологии материалов, утверждённым приказом Минобрнауки от 28.08.2015 № 907

Зав.кафедрой разработчика, д.техн.н., проф. (ученая степень, ученое звание)	<u>10.12.2018</u> (подпись)	Г. Г. Михайлов
Разработчик программы,		
к.физ-мат.н., доц., доцент (ученая степень, ученое звание, должность)	<u>10.12.2018</u> (подпись)	С. И. Ильин

1. Цели и задачи дисциплины

Дать знания в области исследования состава и определения качества материалов на основе сплавов черных и цветных металлов, позволяющих решать на производстве конкретные технологические задачи.

Краткое содержание дисциплины

предмет и методы аналитической химии; качественный и количественный методы химического анализа; физико-химические методы анализа. тепловые свойства металлов; дилатометрия, измерение дилатометрических эффектов, дифференциальная сканирующая калориметрия. электрические свойства, методы измерения удельного электросопротивления. магнитные явления в металлах, определение магнитных характеристик металлов и сплавов при намагничивании. дифракция рентгеновских лучей и электронов на кристаллах; - методы рентгеноструктурного исследования моно- и поликристаллов; - определение параметра кристаллической решётки; - качественный и количественный фазовый анализ; микродифракция электронов. эмиссионный спектральный анализ. абсорбционный спектральный анализ.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
ОК-7 готовностью самостоятельно выполнять исследования на современном оборудовании и приборах (в соответствии с целями магистерской программы) и ставить новые исследовательские задачи ОПК-8 готовностью проводить экспертизу процессов, материалов, методов испытаний	Знать:современное оборудование и приборы Уметь:работать на современном оборудовании и
ОПК-9 способностью к самостоятельному освоению новых методов исследования и изменению научного, научно-педагогического и производственного профиля своей	Владеть:современными методиками исследования Знать:новые методы исследования Уметь:применять эти новые методы исследования Владеть:
профессиональной деятельности ПК-7 готовностью проводить выбор материалов для заданных условий эксплуатации с учетом требований надежности и долговечности, экономичности и экологических последствий их применения на основе знания основных типов неорганических и органических материалов различного назначения, в том числе наноматериалов	Знать:принципы выбора материалов для заданных условий эксплуатации с учетом требований надежности и долговечности, экономичности и экологических последствий Уметь:выбирать материалы для заданных условий эксплуатации с учетом требований надежности и долговечности, экономичности и экологических последствий Владеть:всеми этими принципами
ПК-14 готовностью самостоятельно	Знать:методы проектирования технологических

проектировать технологические процессы производства материала и изделий из него с заданными характеристиками	процессов производства материала и изделий из него с заданными характеристиками Уметь:прогнозировать свойства материалов при заданных технологических процессах
	производства материала и изделий из него Владеть: анализом технологий производства материалов
ПК-11 способностью самостоятельно использовать технические средства для	Знать: технические возможности средств для измерения и контроля основных параметров технологических процессов.
измерения и контроля основных параметров технологических процессов, структуры и свойств материалов и изделий из них, планирования и реализации исследований и	Уметь:применять технические средства для измерения и контроля основных параметров технологических процессов, и свойств материалов и изделий из них.
разработок	Владеть:методами планирования и реализации исследований и разработок.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
	В.1.09 Современные методы физико-
	химического анализа материалов,
Нет	В.1.11 Дефекты и контроль качества материалов,
	Научно-исследовательская работа (4 семестр),
	Научно-исследовательская работа (3 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 5 з.е., 180 ч.

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра			
Oğuna z minura ii. ma anı musummunu	100	1 72	108		
Общая трудоёмкость дисциплины	180	72			
Аудиторные занятия:	80	32	48		
Лекции (Л)	8	8	0		
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	16	16		
Лабораторные работы (ЛР)	40	8	32		
Самостоятельная работа (СРС)	100	40	60		
Написание рефератов и эссэ	60	20	40		
Подготовка отчетов по лабораторным работам	8	8	0		

подготовка к зачету	12	12	0
подготовка к экзамену	20	0	20
Вид итогового контроля (зачет, диф.зачет, экзамен)		зачет	экзамен

5. Содержание дисциплины

№ раздела	Наименование разлелов лисшиплины		Объем аудиторных занятий по видам в часах			
		Всего	Л	П3	ЛР	
1	Структурные и физико химические методы анализа материалов. Металлографические и электронные микроскопы. Атомно- силовая микроскопия.	8	2	4	2	
2	Тепловые свойства металлов. Закономерности теплового расширения твердых тел. Дилатометры	8	2	4	2	
3	Электрические свойства металлов Методы измерения электропроводности.	8	2	4	2	
4	Магнитные свойства металлов. Характеристики петли гистерезиса ферромагнетиков.	8	2	4	2	
5	Подготовка образцов к исследования структуры	6	0	2	4	
6	Сканирующая электронная микроскопия. Морфология. Фрактография.	6	0	2	4	
7	Сканирующая электронная микроскопия. Энергодисперсионная рентгеновская спектроскопия.	6	0	2	4	
8	Сканирующая электронная микроскопия. Дифракция отражённых электронов.		0	2	4	
9	Атомно-эмиссионная спектроскопия.	6	0	2	4	
10	Порошковая дифрактометрия.	6	0	2	4	
11	Рентгенофазовый анализ.	6	0	2	4	
12	Рентгеноструктурный анализ.	6	0	2	4	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Структурные и физико химические методы анализа материалов. Металлографические и электронные микроскопы. Атомно-силовая микроскопия.	2
2		Тепловые свойства металлов. Закономерности теплового расширения твердых тел. Дилатометры	2
3	3	Электрические свойства металлов Методы измерения электропроводности.	2
4	4	Магнитные свойства металлов. Характеристики петли гистерезиса ферромагнетиков.	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Структурные методы анализа материалов. Металлографическая микроскопия.	4

2	2	Закономерности теплового расширения твердых тел. Дилатометры. Анализ дилатограмм.	4
3	3	Электрические свойства металлов. Основные методы измерения электропроводности. Электропроводность гомогенных и гетерогенных сплавов.	4
4	4	Характеристики петли гистерезиса ферромагнетиков. Методы определения намагниченности и коэрцитивной силы.	4
5	5	Подготовка образцов к исследования структуры	2
6	6	Сканирующая электронная микроскопия. Морфология. Фрактография.	2
7	7	Сканирующая электронная микроскопия. Энергодисперсионная рентгеновская спектроскопия.	2
8	8	Сканирующая электронная микроскопия. Дифракция отражённых электронов.	2
9	9	Атомно-эмиссионная спектроскопия.	2
10	10	Порошковая дифрактометрия.	2
11	11	Рентгенофазовый анализ.	2
12	12	Рентгеноструктурный анализ.	2

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лаборатоной работы	Кол- во часов
1	1	Оптическая металлография. Анализ микроструктуры и определение размера зерна.	2
2	2	Получение дилатограммы при нагреве и охлаждении образца эвтектоидной стали и анализ дилатограммы. Определение критических точек.	2
3	3	Методы измерения электропроводности. Определение зависимости удельного электросопротивления от температуры отпуска эвтектоидной стали.	2
4	4	Изучение влияния термической обработки на коэрцитивную силу эвтектоидной стали.	2
5	5	Подготовка образцов к исследования структуры	4
6	6	Сканирующая электронная микроскопия. Морфология. Фрактография.	4
7	7	Сканирующая электронная микроскопия. Энергодисперсионная рентгеновская спектроскопия.	4
8	8	Сканирующая электронная микроскопия. Дифракция отражённых электронов.	4
9	9	Атомно-эмиссионная спектроскопия.	4
10	10	Порошковая дифрактометрия.	4
11	11	Рентгенофазовый анализ.	4
12	12	Рентгеноструктурный анализ.	4

5.4. Самостоятельная работа студента

Выполнение СРС		
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов
Написание рефератов и эссэ	1. ЖуравлёвЛ.Г., Филатов В.И. Физические методы исследования металлов и сплавов: Учебное пособие для	20

Подготовка отчетов по лабораторным работам	студентов металлургических специальностей. — Челябинск: Изд-во ЮУрГУ, 2003. — 165 с. 2. Лившиц Б.Г., Лилеев А.С. Физические методы исследования (тепловые, объёмные, магнитные).//В справочнике: Металловедение и термическая обработка стали. Изд. четвёртое, том І, книга 2./Под ред. М.Л. Бернштейна и А.Г. Рахштадта. М: Металлургия, 1991. 1. ЖуравлёвЛ.Г., Филатов В.И. Физические методы исследования металлов и сплавов: Учебное пособие для студентов металлургических	8
paoorawi	студентов металлургических специальностей. — Челябинск: Изд-во ЮУрГУ, 2003. — 165 с. 2.	
подготовка к зачету	1. ЖуравлёвЛ.Г., Филатов В.И. Физические методы исследования металлов и сплавов: Учебное пособие для студентов металлургических специальностей. — Челябинск: Изд-во ЮУрГУ, 2003. — 165 с. 2. Лившиц Б.Г., Лилеев А.С. Физические методы исследования (тепловые, объёмные, магнитные).//В справочнике: Металловедение и термическая обработка стали. Изд. четвёртое, том І, книга 2./Под ред. М.Л. Бернштейна и А.Г. Рахштадта. М: Металлургия, 1991.	12
Написание рефератов и эссэ	1. ЖуравлёвЛ.Г., Филатов В.И. Физические методы исследования металлов и сплавов: Учебное пособие для студентов металлургических специальностей. — Челябинск: Изд-во ЮУрГУ, 2003. — 165 с. 2. Лившиц Б.Г., Лилеев А.С. Физические методы исследования (тепловые, объёмные, магнитные).//В справочнике: Металловедение и термическая обработка стали. Изд. четвёртое, том І, книга 2./Под ред. М.Л. Бернштейна и А.Г. Рахштадта. М: Металлургия, 1991.	40
подготовка к экзамену	1. ЖуравлёвЛ.Г., Филатов В.И. Физические методы исследования металлов и сплавов: Учебное пособие для студентов металлургических специальностей. — Челябинск: Изд-во ЮУрГУ, 2003. — 165 с. 2. Лившиц Б.Г., Лилеев А.С. Физические методы исследования (тепловые, объёмные, магнитные).//В справочнике: Металловедение и термическая обработка стали. Изд. четвёртое, том І, книга 2./Под ред. М.Л. Бернштейна и А.Г. Рахштадта. М: Металлургия, 1991.	20

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных занятий	Вид работы (Л, ПЗ, ЛР)	Краткое описание	Кол-во ауд. часов
		Выбор методики исследования и	
•	*	подготовки образцов	20
Тренинг	Практические занятия	Составление реального проекта	12
Тренині	и семинары	на конкретное исследование	12

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: нет

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	<u>№№</u> заданий
Структурные и физико химические методы анализа материалов. Металлографические и электронные микроскопы. Атомно-силовая микроскопия.	ОК-7 готовностью самостоятельно выполнять исследования на современном оборудовании и приборах (в соответствии с целями магистерской программы) и ставить новые исследовательские задачи	зачет	1
Тепловые свойства металлов. Закономерности теплового расширения твердых тел. Дилатометры	ОК-7 готовностью самостоятельно выполнять исследования на современном оборудовании и приборах (в соответствии с целями магистерской программы) и ставить новые исследовательские задачи	зачет	1
Электрические свойства металлов Методы измерения электропроводности.	ОПК-8 готовностью проводить экспертизу процессов, материалов, методов испытаний	зачет	1
Магнитные свойства металлов. Характеристики петли гистерезиса ферромагнетиков.	ПК-7 готовностью проводить выбор материалов для заданных условий эксплуатации с учетом требований надежности и долговечности, экономичности и экологических последствий их применения на основе знания основных типов неорганических и органических материалов различного назначения, в том числе наноматериалов	зачет	1
Сканирующая электронная микроскопия. Морфология. Фрактография.	ПК-11 способностью самостоятельно использовать технические средства для измерения и контроля основных параметров	экзамен	2

	технологических процессов, структуры и свойств материалов и изделий из них, планирования и реализации исследований и разработок		
Сканирующая электронная микроскопия. Энергодисперсионная рентгеновская спектроскопия.	ПК-11 способностью самостоятельно использовать технические средства для измерения и контроля основных параметров технологических процессов, структуры и свойств материалов и изделий из них, планирования и реализации исследований и разработок	экзамен	2
Все разделы	ПК-14 готовностью самостоятельно проектировать технологические процессы производства материала и изделий из него с заданными характеристиками	экзамен	1-2
Все разделы	ОПК-9 способностью к самостоятельному освоению новых методов исследования и изменению научного, научнопедагогического и производственного профиля своей профессиональной деятельности	экзамен	1-2

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
экзамен		Отлично: оценка "отлично" ставится в случае выполнения студентом всех расчетных разделов работы более чем на 95 условных баллов, правильном ответе на контрольные вопросы, знании основных терминов и определений, уместном их использовании. Хорошо: оценка "хорошо" ставится в случае дачи студентом правильных ответов на все вопросы в билете, но с небольшими замечаниями или неточностями, знании основных терминов и определений, уместном их использовании. Удовлетворительно: оценка "удовлетворительно" ставится в случае дачи студентом неправильного ответов на один из двух вопросов в билете, в случае знания основных терминов и определений, уместном их использовании. Неудовлетворительно: оценка "неудовлетворительно" ставится в случае когда студент не отвечает на все вопросы в билете, не знает основных терминов и определений, неуместно их использует
зачет	письменный ответ на 5 вопросов	Зачтено: правильный ответ на 3 или более вопросов Не зачтено: правильных ответов менее 3

7.3. Типовые контрольные задания

Вид контроля	Типовые контрольные задания
экзамен	Как изменяется удельное электрическое сопротивление при образовании твёрдых

растворов?

Какие методы измерения электрического сопротивления применяют в металлофизических исследованиях?

Один из образцов стали У8 имеет структуру пластинчатого перлита, а другой — зернистого. Одинаково тли сопротивление этих образцов, имеющих равные размеры? Удельное электрическое сопротивление серебра меньше, чем меди. Каким будет удельное сопротивление сплава меди с серебром по сравнению с сопротивлением компонентов?

Может ли пластическая деформация привести к снижению удельного сопротивления какого-либо сплава?

Как получить сплав с высоким удельным сопротивлением?

В какую сторону изменяется сопротивление проволочки из чистого железа в результате закалки её от 1000°С? Как изменится сопротивление при такой же обработке никелевой проволочки?

Каковы основные закономерности теплового расширения твёрдых тел?

В чём заключается дифференциальный дилатометрический метод?

Каково устройство дифференциального оптико-механического дилатометра?

Как определить критические точки фазового превращения дилатометрическом методом? Как определить истинный и средний (в интервале температур) коэффициент

термического расширения сплава?

Начертите схематические дифференциальные дилатограммы для следующих случаев:

- при нагреве в образце протекает изотермическое превращение с уменьшение объёма;
- при нагреве стали образуется аустенит, превращающийся в мартенсит при охлаждении;
- аустенит, образовавшийся при нагреве, превращается в перлит при охлаждении В чём заключается фазовый магнитный анализ стали?

Что называется намагниченностью насыщения и как её можно измерить?

Сравните точки Кюри фаз отожжённых сталей 10, 40, У8 и У12.

Как определить магнитным методом объём содержания карбидов в углеродистой отожжёной стали?

Требуется определить количество остаточного аустенита в закалённой заэвтектоидной стали методом эталона (фазовый магнитный анализ). Какой образец вы можете предложить в качестве эталона? Проанализируйте другие возможные варианты? Можно ли определить точку Кюри аустенита сплава 05Н30? То же для мартентита стали 40?

Какой эталон следует выбрать для изучения кинетики превращения аустенита в перлит методом фазового магнитного анализа?

Как можно определить коэрцитивную силу?

Как и почему изменяется коэрцитивная сила при отпуске закалённой стали? Стали 30ХГСА иШХ15 закалены. Коэрцитивная сила какой из них выше? Чем это можно объяснить?

Образцы стали У12, закалённые и отпущенные при температуре от 200 до 700°С, перепутаны. Можно ли разложить их в порядке возрастания температуры отпуска на основании измерений коэрцитивной силы?

Можно ли, основываясь только на результатах измерений коэрцитивной силы, установить тип термической обработки стали с известным химическим составом?

Как изменяется удельное электрическое сопротивление при образовании твёрдых растворов?

Какие методы измерения электрического сопротивления применяют в металлофизических исследованиях?

зачет

Один из образцов стали У8 имеет структуру пластинчатого перлита, а другой — зернистого. Одинаково тли сопротивление этих образцов, имеющих равные размеры? Удельное электрическое сопротивление серебра меньше, чем меди. Каким будет удельное сопротивление сплава меди с серебром по сравнению с сопротивлением компонентов?

Может ли пластическая деформация привести к снижению удельного сопротивления

какого-либо сплава?

Как получить сплав с высоким удельным сопротивлением?

В какую сторону изменяется сопротивление проволочки из чистого железа в результате закалки её от 1000°С? Как изменится сопротивление при такой же обработке никелевой проволочки?

Каковы основные закономерности теплового расширения твёрдых тел?

В чём заключается дифференциальный дилатометрический метод?

Каково устройство дифференциального оптико-механического дилатометра?

Как определить критические точки фазового превращения дилатометрическом методом? Как определить истинный и средний (в интервале температур) коэффициент термического расширения сплава?

Начертите схематические дифференциальные дилатограммы для следующих случаев:

- при нагреве в образце протекает изотермическое превращение с уменьшение объёма;
- при нагреве стали образуется аустенит, превращающийся в мартенсит при охлаждении;
- аустенит, образовавшийся при нагреве, превращается в перлит при охлаждении В чём заключается фазовый магнитный анализ стали?

Что называется намагниченностью насыщения и как её можно измерить?

Сравните точки Кюри фаз отожжённых сталей 10, 40, У8 и У12.

Как определить магнитным методом объём содержания карбидов в углеродистой отожжёной стали?

Требуется определить количество остаточного аустенита в закалённой заэвтектоидной стали методом эталона (фазовый магнитный анализ). Какой образец вы можете предложить в качестве эталона? Проанализируйте другие возможные варианты? Можно ли определить точку Кюри аустенита сплава 05Н30? То же для мартентита стали 40?

Какой эталон следует выбрать для изучения кинетики превращения аустенита в перлит методом фазового магнитного анализа?

Как можно определить коэрцитивную силу?

Как и почему изменяется коэрцитивная сила при отпуске закалённой стали? Стали 30ХГСА иШХ15 закалены. Коэрцитивная сила какой из них выше? Чем это можно объяснить?

Образцы стали У12, закалённые и отпущенные при температуре от 200 до 700°С, перепутаны. Можно ли разложить их в порядке возрастания температуры отпуска на основании измерений коэрцитивной силы?

Можно ли, основываясь только на результатах измерений коэрцитивной силы, установить тип термической обработки стали с известным химическим составом?

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Журавлев, Л. Г. Физические методы исследования металлов и сплавов Учеб. пособие для вузов по специальности 110500 "Металловедение и термич. обраб. металлов" Л. Г. Журавлев, В. И. Филатов; Юж.-Урал. гос. ун-т, Каф. Физ. металловедение и физика твердого тела. 2-е изд. Челябинск: Издательство ЮУрГУ, 2004. 164, [1] с.
- 2. Журавлев, Л. Г. Физические методы исследования металлов и сплавов Учеб. пособие для металлург. специальностей Л. Г. Журавлев, В. И. Филатов; Юж.-Урал. гос. ун-т, Каф. Физ. металловедение и физика твердого тела. Челябинск: Издательство ЮУрГУ, 2003. 164,[1] с. электрон. версия
- 3. Лившиц, Б. Г. Металлография Учеб. для металлург. спец. вузов Б. Г. Лившиц. 3-е изд., перераб. и доп. М.: Металлургия, 1990. 334 с. ил.

4. Лившиц, Б. Г. Физические свойства металлов и сплавов Учеб. для металлург. спец. вузов Б. Г. Лившиц, В. С. Крапошин, Я. Л. Линецкий; Под ред. Б. Г. Лившица. - 2-е изд., перераб. и доп. - М.: Металлургия, 1980. - 320 с. ил.

б) дополнительная литература:

- 1. Журавлев, В. Н. Машиностроительные стали [Текст] Справочник В. Н. Журавлев, О. И. Николаева. 4-е изд., перераб. и доп. М.: Машиностроение, 1992. 480 с. ил.
- 2. Журавлев, Л. Г. Физические методы исследования металлов и сплавов Учеб. пособие для металлург. специальностей Л. Г. Журавлев, В. И. Филатов; Юж.-Урал. гос. ун-т, Каф. Физ. металловедение и физика твердого тела. Челябинск: Издательство ЮУрГУ, 2003. 164,[1] с. электрон. версия
- 3. Аналитический контроль металлургического производства Учеб. для вузов по направлению "Металлургия" Ю. А. Карпов, Ф. А. Гимельфарб, А. П. Савостин, В. Д. Сальников. М.: Металлургия, 1995. 399 с. ил.
- 4. Борисова, О. М. Химические, физико-химические и физические методы анализа Учеб. для техникумов по спец. 1106 "Литейн. пр-во чер. и цв. металлов; 1107 "Металловедение и терм. обраб. металлов". М.: Металлургия, 1991. 271 с. ил.
- 5. Карпов, Ю. А. Аналитический контроль в металлургическом производстве [Текст] учеб. для вузов по направлению и специальности "Металлургия" Ю. А. Карпов, А. П. Савостин, В. Д. Сальников. М.: Академкнига, 2006. 351 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Физика металлов и металловедение
 - 2. Физика твердого тела
 - 3. Металловедение и термическая обработка

г) методические указания для студентов по освоению дисциплины:

1. Сальников, В.Д. Методы контроля и анализа веществ: рентгенографические методы анализа: лабораторный практикум. — М.: МИСИС, 2014. — 55 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

2. Сальников, В.Д. Методы контроля и анализа веществ: рентгенографические методы анализа: лабораторный практикум. — М.: МИСИС, 2014. — 55 с.

Электронная учебно-методическая документация

№	Вид литературы	Наименование разработки	Наименование ресурса в электронной форме	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
---	-------------------	-------------------------	--	---

		Журавлёв Л.Г., Карзунов С.Е. Физика		
1	Основная	металлов: Учебное пособие к	Электронный	Интернет /
1	литература	лабораторным работам. — Челябинск:	каталог ЮУрГУ	Свободный
		ЧГТУ, 1993. — 131 с.		

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

1. Microsoft-Office(бессрочно)

Перечень используемых информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	324 (1)	Вычислительный класс
Практические занятия и семинары	324 (1)	Вычислительный класс
Лабораторные занятия	324 (1)	Вычислительный класс