ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Институт естественных и точных наук

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышанева А. А. [Овакователь: zmysylliaevana [

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М3.02 Тепломассообмен для направления 03.04.01 Прикладные математика и физика уровень Магистратура магистерская программа Физическая и химическая механика сплошных сред форма обучения очная кафедра-разработчик Вычислительная механика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 03.04.01 Прикладные математика и физика, утверждённым приказом Минобрнауки от 07.08.2020 № 898

Зав.кафедрой разработчика, к.физ.-мат.н., доц.

Разработчик программы, к.физ.-мат.н., доц., доцент

СОГЛАСОВАНО

Руководитель образовательной программы д.физ.-мат.н., проф.

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Шествюнская Е. С. Пользовятель: shestkovistaines [дата подписание] об 30 2 202

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Шествювская Е. С. Подволятель: shestkovskinies [дта подписания: 05 02 2022

Е. С. Шестаковская

Е. С. Шестаковская

Эпектронный документ, подписанный ПЭП, хранится в системе засектронного документооборога (Ожно-Уран-комто государственного университета СЕВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП ОВООМЕТСК. КОВВАЛЕВ (О М. ОВООМЕТСК. КОЯВСК. КОЯВСК.

1. Цели и задачи дисциплины

Сформировать у студентов представление о физической природе процессов тепло- и массообмена, и используемых при изучении этих процессов теоретических, экспериментальных и расчетных методах.

Краткое содержание дисциплины

Основные положения учения о теплопроводности. Стационарная теплопроводность. Нестационарные процессы теплопроводности. Конвективный теплообмен в однородной среде. Основные положения учения о конвективном теплообмене. Подобие и моделирование конвективного теплообмена. Общие вопросы обработки результатов и расчета конвективной теплоотдачи. Теплоотдача при вынужденном продольном омывании плоской поверхности. Теплоотдача при вынужденном течении жидкости. Теплоотдача при свободном движении жидкости. Теплообмен при фазовых и химических превращениях. Тепло- и массообмен в двухкомпонентный средах. Тепло- и массообмен при химических превращениях. Теплообмен излучением. Основные понятия теории теплового излучения. Радиационный теплообмен между телами, разделенными прозрачной средой. Радиационный теплообмен в поглощающих и излучающих средах.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
исследовать и применять математические модели	Знает: основные понятия и законы процессов тепломассообмена Имеет практический опыт: решения задач тепломассобмена

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
II азовая линамика	Физика взрыва и удара, Теория горения

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Газовая динамика	Знает: основные понятия и законы газовой динамики Умеет: применять математические модели для описания движения газов Имеет практический опыт: решения задач стационарной и нестационарной газовой динамики

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 4 з.е., 144 ч., 74,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 2
Общая трудоёмкость дисциплины	144	144
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	69,5	69,5
с применением дистанционных образовательных технологий	0	
Выполнение домашних заданий	32,5	32.5
Подготовка доклада	10	10
Подготовка к экзамену	27	27
Консультации и промежуточная аттестация	10,5	10,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по видам в					
	Наименование разделов дисциплины	часах					
раздела		Всего	Л	П3	ЛР		
1	Основные положения учения о теплопроводности	2	2	0	0		
2	Стационарная теплопроводность	17	7	10	0		
3	Нестационарные процессы теплопроводности	14	6	8	0		
4	Конвективный теплообмен в однородной среде	13	7	6	0		
1 2	Теплообмен при фазовых и химических превращениях	4	4	0	0		
6	Теплообмен излучением	14	6	8	0		

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Основные положения учения о теплопроводности. Температурное поле. Температурный градиент. Тепловой поток. Закон Фурье. Коэффициент теплопроводности. Дифференциальное уравнение теплопроводности. Условия однозначности для процессов теплопроводности.	2
2-3	/	Передача теплоты через плоскую стенку. Передача теплоты через цилиндрическую стенку. Передача теплоты через шаровую стенку.	4
4-5	2	Теплопроводность при наличии внутренних источников теплоты. Теплопроводность плоской стенки. Теплопроводность цилиндрической	3

		стенки.	
5-6-7	3	Общие положения. Аналитическое описание процесса. Охлаждение (нагревание) неограниченной пластины и бесконечно длинного цилиндра. Охлаждение шара.	4
7-8	3	Охлаждение тел конечных размеров. Зависимость процесса охлаждения от формы и размеров тела. Регулярный режим охлаждения тел.	2
8-9	4	Основные понятия и определения. Физические свойства жидкости. Постановка краевых задач конвективного теплообмена. Гидродинамический и тепловой пограничные слои. Турбулентный перенос теплоты и количества движения. Приведение математической формулировки краевой задачи к записи в безразмерных переменных. Безразмерные переменные и уравнения подобия. Условия подобия физических процессов. Следствия из условий подобия. Метод размерностей.	3
10	4	Интегральные уравнения пограничного слоя. Теплоотдача при ламинарном пограничном слое. Переход от ламинарного течения к турбулентному. Теплоотдача при турбулентном пограничном слое.	2
11	4	Особенности движения и теплообмена в трубах. Интегральное уравнение теплоотдачи для стабилизированного теплообмена. Теплоотдача при течении жидкости в гладких трубах круглого поперечного сечения и в трубах некруглого сечения, изогнутых и шероховатых трубах. Теплоотдача при свободном движении жидкости в большом объёме. Теплообмен при свободном движении жидкости в ограниченном пространстве.	2
12-13	5	Тепло- и массообмен в двухкомпонентный средах. Тепло- и массообмен при химических превращениях.	4
14	6	Виды лучистых потоков. Вектор излучения. Законы теплового излучения.	2
15	6	Теплообмен между плоскопараллельными поверхностями, разделёнными прозрачной средой. Теплообмен излучением между телом и его оболочкой, разделёнными прозрачной средой. Теплообмен излучением между телами при наличии защитных экранов.	2
16	6	Уравнение переноса лучистой энергии. Оптическая толщина среды и режимы излучения. Особенности излучения газов и паров. Лучистый теплообмен между газовой средой и оболочкой.	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1-3	2	Теплопроводность при стационарном режиме. Внутренние источники теплоты отсутствуют.	6
4-5	2	Стационарная теплопроводность при наличии внутренних источников теплоты.	4
6-7		Нестационарные процессы теплопроводности. Методы расчета температуры тела и теплового потока. Использование номограмм.	4
8-9)	Расчет температуры тел конечных размеров. Регулярный режим охлаждения тел.	4
10-11	4	Подобие и моделирование процессов конвективного теплообмена.	3
11-12	4	Обработка результатов измерения и расчет конвективной теплоотдачи.	3
13-14	6	Теплообмен излучением между твердыми телами, разделёнными прозрачной средой.	4
15-16	6	Теплообмен излучением в поглощающей среде.	4

5.3. Лабораторные работы

5.4. Самостоятельная работа студента

В	Выполнение СРС						
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов				
Выполнение домашних заданий	ПУМД осн.лит.2, ПУМД осн.лит.3, ЭУМД доп.лит.2: стр. 108-164	2	32,5				
Подготовка доклада	ПУМД осн.лит.1, ПУМД доп.лит.1, ЭУМД осн.лит.1	2	10				
Подготовка к экзамену	ПУМД осн.лит.1: гл. 1 стр. 7-23, гл. 2 стр. 24-43, 65-73, гл. 3 стр. 74-106, гл. 4 стр. 125-142, 149-167, гл. 7 стр. 179-199, гл. 8 стр. 200-221, гл. 16 стр. 361-377, гл. 17 стр. 378-392, ПУМД доп.лит.1: гл. 1 стр. 8-33, гл. 2 стр. 34-68, гл. 3 стр. 69-200, гл. 5 стр. 160-192, гл. 7 стр. 220-244, ЭУМД осн.лит.1: гл. 1 стр. 5-71, гл. 2 стр. 72-106, гл. 3 стр. 107-149	2	27				

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл		Учи- тыва- ется в ПА
1	2	Текущий контроль	Домашнее задание № 1	1	25	Домашнее задание содержит 5 задач. Каждая задача оценивается по пятибалльной шкале: 5 баллов - задача решена верно, студент может объяснить полученное решение; 4 балла - задача решена верно, но имеются недочёты или незначительные ошибки; 3 балла - задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить; 2 балла - задача решена неверно, ход решения выбран верный, имеются ошибки в формулах; 1 балл - задача не решена, но верно записаны основные формулы; 0 баллов - решение не предоставлено.	экзамен
2	2	Текущий контроль	Домашнее задание № 2	1	15	Домашнее задание содержит 3 задачи. Каждая задача оценивается по пятибалльной шкале: 5 баллов - задача решена верно, студент может объяснить полученное решение; 4 балла - задача	экзамен

						решена верно, но имеются недочёты или незначительные ошибки; 3 балла - задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить; 2 балла - задача решена	
						неверно, ход решения выбран верный, имеются ошибки в формулах; 1 балл - задача не решена, но верно записаны основные формулы; 0 баллов - решение не предоставлено.	
3	2	Текущий контроль	Домашнее задание № 3	1	30	Домашнее задание содержит 6 задач. Каждая задача оценивается по пятибалльной шкале: 5 баллов - задача решена верно, студент может объяснить полученное решение; 4 балла - задача решена верно, но имеются недочёты или незначительные ошибки; 3 балла - задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить; 2 балла - задача решена неверно, ход решения выбран верный, имеются ошибки в формулах; 1 балл - задача не решена, но верно записаны основные формулы; 0 баллов - решение не предоставлено.	экзамен
4	2	Текущий контроль	Домашнее задание № 4	1	30	Домашнее задание содержит 6 задач. Каждая задача оценивается по пятибалльной шкале: 5 баллов - задача решена верно, студент может объяснить полученное решение; 4 балла - задача решена верно, но имеются недочёты или незначительные ошибки; 3 балла - задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить; 2 балла - задача решена неверно, ход решения выбран верный, имеются ошибки в формулах; 1 балл - задача не решена, но верно записаны основные формулы; 0 баллов - решение не предоставлено.	экзамен
5	2	Текущий контроль	Домашнее задание № 5	1	30	Домашнее задание содержит 6 задач. Каждая задача оценивается по пятибалльной шкале: 5 баллов - задача решена верно, студент может объяснить полученное решение; 4 балла - задача решена верно, но имеются недочёты или незначительные ошибки; 3 балла - задача решена с ошибками, верно записаны основные соотношения, но студент не смог их применить; 2 балла - задача решена неверно, ход решения выбран верный, имеются ошибки в формулах; 1 балл - задача не решена, но верно записаны основные формулы; 0 баллов - решение не предоставлено.	экзамен
6	2	Текущий	Доклад	1	4	Показатели оценивания доклада: 4 балла –	экзамен

		контроль				тема раскрыта достаточно глубоко и полно, магистрант излагает мысль последовательно, логично и ясно, приводит примеры и уверенно отвечает на дополнительные вопросы, владеет научной терминологией; 3 балла — тема раскрыта достаточно полно, студент показывает знание вопросов темы, не всегда дает исчерпывающие аргументированные ответы на заданные вопросы; 2 балла — тема освещена поверхностно, студент проявляет неуверенность, показывает слабое знание вопросов темы, не всегда дает ответы на заданные вопросы; 1 балл — тема не раскрыта, студент затрудняется отвечать на поставленные вопросы, не	
						знает теории вопроса, при ответе допускает существенные ошибки; 0 баллов - презентация не представлена.	
7	2	Проме- жуточная аттестация	Тест	-	22	Тест состоит из 13 теоретических вопросов и одной задачи. Теоретические вопросы оцениваются по уровню сложности в 1 балл (10 вопросов), 2 балла (2 вопроса) или 3 балла (1 вопрос), правильно решенная задача оценивается в 5 баллов. Неправильный ответ на вопрос соответствует 0 баллов.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен		В соответствии с пп. 2.5, 2.6 Положения

6.3. Оценочные материалы

17	D		№ KM				
Компетенции	Результаты обучения	1	2	3	4	5 6	7
ПК-1	Знает: основные понятия и законы процессов тепломассообмена	+	+	+	+-	++	- +
ПК-1	Имеет практический опыт: решения задач тепломассобмена	+	+	+	+	H	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Исаченко, В. П. Теплопередача Учебник для теплоэнерг. спец. втузов. 4-е изд., перераб. и доп. М.: Энергоиздат, 1981. 417 с. ил.
 - 2. Шестаковская, Е. С. Конвективный и радиационный теплообмен в вопросах и задачах [Текст] учеб. пособие по направлению "Механика и мат. моделирование" и др. Е. С. Шестаковская, Н. Л. Клиначева; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2018. 55, [1] с. ил. электрон. версия
 - 3. Шестаковская, Е. С. Кондуктивный теплообмен в вопросах и задачах [Текст] учеб. пособие по направлению "Механика и мат. моделирование" и др. Е. С. Шестаковская, Н. Л. Клиначева; Юж.-Урал. гос. ун-т, Каф. Вычисл. механика; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2018. 82, [2] с. ил. электрон. версия
- б) дополнительная литература:
 - 1. Михеев, М. А. Основы теплопередачи Текст М. А. Михеев, И. М. Михеева. 3-е изд., репр. М.: БАСТЕТ, 2010. 342, [1] с. ил., табл.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. методические рекомендации по выполнению СРС

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. методические рекомендации по выполнению СРС

Электронная учебно-методическая документация

Nº	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства Лань	Дерюгин, В. В. Тепломассообмен: учебное пособие для вузов / В. В. Дерюгин, В. Ф. Васильев, В. М. Уляшева. — 4-е изд., стер. — Санкт-Петербург: Лань, 2021. — 240 с. — ISBN 978-5-8114-8109-5. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/171853 (дата обращения: 01.11.2021). — Режим доступа: для авториз. пользователей.
2	Дополнительная литература	библиотечная система издательства Лань	, И. К. Общая физика: учебное пособие / И. К., В. В. Бурдин. — Пермь: ПНИПУ, [б. г.]. — Часть 4: Гидродинамика и теплообмен — 2011. — 167 с. — ISBN 978-5-398-00588-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/160908 (дата обращения: 01.11.2021). — Режим доступа: для авториз. пользователей.

Перечень используемого программного обеспечения:

1. Microsoft-Windows(бессрочно)

- 2. Microsoft-Office(бессрочно)
- 3. Math Works-MATLAB (Simulink R2008a, SYMBOLIC MATH)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
1	707 (1)	компьютеры, пакет MatLab
Лекции	708a (1)	мультимедийное оборудование