ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП (Кому выдан: Тарасова О. Ю. Польователь: tarasovavi (Дата подписания 20 de 2025

О. Ю. Тарасова

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.19 Компьютерная графика для направления 09.03.04 Программная инженерия уровень Бакалавриат форма обучения очная кафедра-разработчик Математика и вычислительная техника

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 09.03.04 Программная инженерия, утверждённым приказом Минобрнауки от 19.09.2017 № 920

Зав.кафедрой разработчика, к.физ.-мат.н., доц.

Разработчик программы, к.физ.-мат.н., доц., заведующий кафедрой

О. Ю. Тарасова

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского госуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Колу выдан: Тарасова О. Ю. Пользователь: tarasovaci

О. Ю. Тарасова

1. Цели и задачи дисциплины

Цель дисциплины - познакомить студентов с основными понятиями и алгоритмами компьютерной графики, дать базовые навыки работы в графических системах, научить создавать модели трехмерных и двумерных объектов, визуализировать их и применять полученные знания, научить решению различных задач Задачи дисциплины: • изучение и освоение базовых понятий, методов и алгоритмов, применяемых при разработке компьютерной графики. • формирование взгляда на компьютерную графику как на систематическую научно-практическую деятельность, носящую как теоретический, так и прикладной характер. • формирование базовых теоретических понятий, лежащих в основе компьютерной графики, освоение особенностей восприятия растровых изображений, методов квантования и дискретизации изображений. • дать представление структуры программного обеспечения и реализации алгоритмов компьютерной графики • дать представление о методах геометрического моделирования, моделях графических данных. • научить использованию алгоритмов и методов компьютерной графики при проектировании пользовательских интерфейсов

Краткое содержание дисциплины

Дисциплина "Компьютерная графика" знакомит студентов с областями применения компьютерной графики и тенденциями построения современных систем. Студенты знакомятся с базовыми методами и алгоритмами компьютерной графики. Представляются растровая графика и виртуальные поверхности отображения, геометрические преобразования и графический конвейер. Рассматриваются представление пространственных форм и методы повышения реалистичности.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

	Планируемые результаты обучения по дисциплине Знает: термины и обозначения, применяемые в компьютерной графике; методы реализации
ОПК-6 Способен разрабатывать алгоритмы и программы, пригодные для практического использования, применять основы информатики и программирования к проектированию, конструированию и тестированию программных продуктов	алгоритмов компьютерной графики с помощью графических библиотек; Умеет: использовать инструменты программного обеспечения компьютерной графики с целью придания представлениям различных уровней наглядности и информативности; Имеет практический опыт: работы по представлению объектов компьютерной графики, реализации графических интерфейсов и сцен

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
INGUULIV	1.О.23 Информационные системы, 1.О.14 Тестирование программного обеспечения

1.О.10.06 Программирование защищенных	
интеллектуальных систем,	
1.О.10.02 Основы программирования,	
1.О.10.05 Веб-программирование для систем	
искусственного интеллекта,	
1.О.10.04 Объектно-ориентированное	
программирование	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.10.06 Программирование защищенных интеллектуальных систем	Знает: основные стандарты в области информационной безопасности и искусственного интеллекта, основы разработки систем информационной безопасности, методы обнаружения вторжений в информационные системы (ИС); методы безопасного использования коммуникационных сетей общего доступа при построении защищенных ИС; основные принципы применения аппаратных и программных средств обеспечения информационной безопасности Умеет: разрабатывать подходы, согласно действующих норм, для систем искусственного интеллекта в задачах информационной безопасности, применять современные программные и аппаратные средства защиты информации; классифицировать и оценивать угрозы информационной безопасности для ИС Имеет практический опыт: решения задач информационной безопасности систем искусственного интеллекта, тестирования алгоритмов в задачах информационной безопасности опыт безопасности, работы с ведущими программными и аппаратными комплексными
1.О.10.02 Основы программирования	средствами защиты информации Знает: основы алгоритмического языка программирования, методы отладки структурных программ; подходы к решению алгоритмических задач, современные программные средства разработки и тестирования программных продуктов Умеет: разрабатывать алгоритмы с использованием базовых алгоритмических конструкций, проводить структурную декомпозицию задач, составлять программный код, отвечающий заданному или разработанному алгоритму, применять язык программирования в современной среде разработки для решения задач профессиональной деятельности Имеет практический опыт: программирования на алгоритмическом языке в разрезе процедурного

	T 1
	подхода, а так же навыки отладки и тестирования программ, создания и отладки программ в современной среде разработки, оформления отчетов, используя информационные технологии и программные средства
1.О.15 Структуры и алгоритмы обработки данных	Знает: основные типы структур данных, используемые в мировой практике программирования; способы отображения структур данных на структуры хранения; основные операции и алгоритмы над структурами Умеет: применять изученные типы данных и алгоритмы работы с ними при решении конкретных задач; оценивать затраты времени и ресурсов при использовании тех или иных структур и алгоритмов в существующих и вновь разрабатываемых программных средствах Имеет практический опыт: программирования операций над основными базовыми структурами данных при программировании конкретных задач
1.О.10.03 Программирование на языке С++	Знает: основы языка программирования С++, методы отладки программ Умеет: проводить структурную декомпозицию задач, применять конструкции языка С++ для решения задач по заданному или разработанному алгоритму Имеет практический опыт: программирования на языке С++, а так же навыки отладки и тестирования программ
1.О.10.04 Объектно-ориентированное программирование	Знает: концепцию объектно-ориентированного программирования и соответствующие требования к программному обеспечению, составные части объектно-ориентированной парадигмы программирования; основы объектно-ориентированного языка программирования Умеет: применять объектно-ориентированный язык программирования, современную среду разработки для решения задач профессиональной деятельности и обосновывать принимаемые проектные решения, применять объектно-ориентированную декомпозицию задач; разрабатывать объектно-ориентированные библиотеки Имеет практический опыт: разработки программных решений в соответствии с требованиями применения объектно-ориентированного подхода, разработки программ в объектно-ориентированной парадигме
1.О.10.05 Веб-программирование для систем искусственного интеллекта	Знает: основы проектирования сайтов и применяемые технологии, основы программирования Internet-страниц различными программными средствами., основы проектирования сайтов и применяемые технологии, основы программирования Internet-страниц различными программными средствами Умеет: создавать статические HTML-страницы и применять таблицы стилей; писать клиентские

скрипты на языке javascript; писать серверные
приложения на языке php; осуществлять доступ к
базам данных при проектировании web-сайта;
настраивать конфигурацию web-сервера,
создавать статические HTML-страницы и
применять таблицы стилей; писать клиентские
скрипты на языке javascript; писать серверные
приложения на языке php; осуществлять доступ к
базам данных при проектировании web-сайта;
настраивать конфигурацию web-сервера Имеет
практический опыт: разработки web-приложений
с применением современных языков
программирования и технологий, разработки
web-приложений с применением современных
языков программирования и технологий

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 6
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	35,75	35,75
Подготовка к зачету	8	8
Подготовка к выполнению, оформление практических работ	27,75	27.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

$N_{\underline{0}}$	Heyrycayanawa maayayan waxayyayayay	Объем аудиторных занятий по видам в часах			
раздела	Наименование разделов дисциплины	Всего	Л	П3	ЛР
1	Алгоритмы растровой графики	12	6	6	0
2	Визуализация 3D объектов	20	10	10	0

5.1. Лекции

$N_{\underline{0}}$	№	Наименование или краткое содержание лекционного занятия	
лекции	раздела		
1-3	1	Алгоритмы растровой графики	6
4	2	Каркасная модель 3D объекта	2

5-6	2	Модели затенения. Алгоритмы удаления невидимых граней.	4
7-8	2	Наложения текстур. Аффинные преобразования в 3D моделировании.	4

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол-во часов
1	1	Алгоритм Брезенхема. Построение прямой линии и окружности	2
2	1	Закраска треугольного полигона	3
3	1	Аффинные преобразования	1
4	2	Каркасная модель 3D объекта	2
5	2	Плоская модель затенения	2
6	2	Удаление невидимых граней. Алгоритм Z-буффера	2
7	2	Наложение текстуры	3
8	2	Аффинные преобразования в 3D моделировании	1

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на	Семестр	Кол- во	
	pecypc		часов	
Подготовка к зачету	ПУМД.доп.[1, стр. 50-75], ПУМД.осн.[2, стр. 126-149], ПУМД.осн.[1, стр. 54-109]; метод.[1];	6	8	
Подготовка к выполнению, оформление практических работ	ПУМД осн.[1]; ПУМД осн.[2]; ПУМД доп.[1]; ПУМД метод.[1];	6	27,75	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	6	Текущий контроль	Проволочный рендер	1	5	5 - Код программы написан корректно, учтены все возможные события в работе алгоритма. Студент отвечает на любые вопросы связанные с кодом и алгоритмом программы. 4 - Код программы написан корректно, но	зачет

						учтены не все возможные события в работе алгоритма. Студент уверенно ориентируется в коде, знает и понимает алгоритм программы. 3 - Код программы имеет некоторые ошибки. Студент понимает алгоритм программы. 2 - Код работает некорректно, студент плохо понимает алгоритм программы. 1 - Код работает некорректно, студент не ориентируется в коде 0 - Работа не представлена	
2	6	Текущий контроль	Плоская модель затенения	1	5	 5 - Код программы написан корректно, учтены все возможные события в работе алгоритма. Студент отвечает на любые вопросы связанные с кодом и алгоритмом программы. 4 - Код программы написан корректно, но учтены не все возможные события в работе алгоритма. Студент уверенно ориентируется в коде, знает и понимает алгоритм программы. 3 - Код программы имеет некоторые ошибки. Студент понимает алгоритм программы. 2 - Код работает некорректно, студент плохо понимает алгоритм программы. 1 - Код работает некорректно, студент не ориентируется в коде 0 - Работа не представлена 	зачет
3	6	Текущий контроль	Наложение текстуры	1	5	 5 - Код программы написан корректно, учтены все возможные события в работе алгоритма. Студент отвечает на любые вопросы связанные с кодом и алгоритмом программы. 4 - Код программы написан корректно, но учтены не все возможные события в работе алгоритма. Студент уверенно ориентируется в коде, знает и понимает алгоритм программы. 3 - Код программы имеет некоторые ошибки. Студент понимает алгоритм программы. 2 - Код работает некорректно, студент плохо понимает алгоритм программы. 1 - Код работает некорректно, студент не ориентируется в коде 0 - Работа не представлена 	зачет
4	6	Текущий контроль	Затенение по Фонгу	1	5	 5 - Код программы написан корректно, учтены все возможные события в работе алгоритма. Студент отвечает на любые вопросы связанные с кодом и алгоритмом программы. 4 - Код программы написан корректно, но учтены не все возможные события в работе алгоритма. Студент уверенно ориентируется в коде, знает и понимает алгоритм программы. 3 - Код программы имеет некоторые ошибки. 	зачет

						Студент понимает алгоритм программы. 2 - Код работает некорректно, студент плохо понимает алгоритм программы. 1 - Код работает некорректно, студент не ориентируется в коде 0 - Работа не представлена	
5	6	Текущий контроль	Управление камерой	1	5	 5 - Код программы написан корректно, учтены все возможные события в работе алгоритма. Студент отвечает на любые вопросы связанные с кодом и алгоритмом программы. 4 - Код программы написан корректно, но учтены не все возможные события в работе алгоритма. Студент уверенно ориентируется в коде, знает и понимает алгоритм программы. 3 - Код программы имеет некоторые ошибки. Студент понимает алгоритм программы. 2 - Код работает некорректно, студент плохо понимает алгоритм программы. 1 - Код работает некорректно, студент не ориентируется в коде 0 - Работа не представлена 	зачет
6	6	Проме- жуточная аттестация	зачет	-	1	Для получения зачетау необходимо сдать 4 работы минимум на 3 балла каждая. Зачет проводится в форме опроса, оценка по шкале зачтено/не зачтено Зачтено (1): Студент освоил базовые понятия, методы и алгоритмы, применяемые в компьютерной графике. Имеет представление о реализации алгоритмов компьютерной графики и геометрического моделирования Не зачтено (0): Студент не освоил базовые понятия, методы и алгоритмы, применяемые в компьютерной графике. Не имеет представление о реализации алгоритмов компьютерной графики и геометрического моделирования	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	I — опенивание учесной ледтельности осучающихся по	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Dagway many a few years	№ КМ
Компетенции	Результаты обучения	123456

ОПК-6	Знает: термины и обозначения, применяемые в компьютерной графике; методы реализации алгоритмов компьютерной графики с помощью графических библиотек;			-	+	+	+
ОПК-6	Умеет: использовать инструменты программного обеспечения компьютерной графики с целью придания представлениям различных уровней наглядности и информативности;		+ -	+	+	+	+
ОПК-6	Имеет практический опыт: работы по представлению объектов компьютерной графики, реализации графических интерфейсов и сцен		+	+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Соколова, Е. В. Математические основы компьютерной графики [Текст] : метод. указания к лаб. практикуму для студентов направления "Програм. инженерия" / Е. В. Соколова, Г. В. Сорокин; Юж.-Урал. гос. ун-т, Златоуст. фил. , Каф. Математика и вычисл. техника; ЮУрГУ. Челябинск : Издат. центр ЮУрГУ, 2018. 35 с.
 - 2. Шундеева, И. И. Компьютерная графика [Текст] : рабочая программа, опор. лекции, варианты заданий / И. И. Шундеева ; Юж.-Урал. гос. ун-т, Златоуст. фил., Каф. Техн. механика ; ЮУрГУ. Челябинск : Изд-во ЮУрГУ, 2004. 150 с. : ил., табл.

б) дополнительная литература:

- 1. Романычева, Э. Т. Инженерная и компьютерная графика [Текст]: учеб. для вузов с дистанц. обучением по направлениям "Информатика и вычисл. техника", "Проектирование и технология электрон. средств" и др. / Э. Т. Романычева, Т. Ю. Соколова, Г. Ф. Шандурина. 2-е изд., перераб. М.: ДМК, 2001. 586 с.: ил. (Проектирование).
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. 1. Плотникова, С. В. Компьютерная графика [Текст] : конспект лекций по специальности 230105 "Программное обеспечение вычисл. техники и автоматизир. систем" / С. В. Плотникова, Е. А. Полуэктов, С. А. Хаустов ; Юж.-Урал. гос. ун-т, Златоуст. фил., Каф. Техн. механика ; ЮУрГУ Челябинск : Издательский Центр ЮУрГУ , 2011
 - 2. Соколова, Е. В. Математические основы компьютерной графики [Текст] : метод. указания к лаб. практикуму для студентов направления "Програм. инженерия" / Е. В. Соколова, Г. В. Сорокин; Юж.-Урал. гос. ун-т, Златоуст. фил. , Каф. Математика и вычисл. техника; ЮУрГУ. Челябинск : Издат. центр ЮУрГУ, 2018. 35 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Соколова, Е. В. Математические основы компьютерной графики [Текст] : метод. указания к лаб. практикуму для студентов направления "Програм. инженерия" / Е. В. Соколова, Г. В. Сорокин; Юж.-Урал. гос. ун-т, Златоуст. фил. , Каф. Математика и вычисл. техника; ЮУрГУ. — Челябинск : Издат. центр ЮУрГУ, 2018. — 35 с.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

1. Microsoft-Windows(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -База данных ВИНИТИ РАН(бессрочно)

8. Материально-техническое обеспечение дисциплины

		Основное оборудование, стенды, макеты, компьютерная техника,
Вид занятий	№	предустановленное программное обеспечение, используемое для
Бид занятии	ауд.	
	ļ -	различных видов занятий
		Системный блок: Intel Core2 DuoE6400/2*512 MB/120GbP5B-
		VM/3C905CX-TX-M/Kb (4 шт); Celeron 2000 MHz 256 Mb 40Gb (1 шт);
		Celeron D 330 2.66 GHz/3200 256 Mb (1 шт); Монитор: 18.5" BenQ
		GL955A (LCD, Wide, 1366x768, D-Sub) (1 шт); Samsung 743N (1 шт); ТFТ
		19" Samsung 940BF (2 шт); Samsung Sync Master 797 MB (2 шт); ПК в
		составе (4 шт): корпус Minitower INWIN V500 Micro ATX 350W (M/B
Практические		ASUSTeK P5B-MX (RTL) Socket775, CPU Intel Core 2 Duo E4600 BOX 2.4
занятия и семинары		ГГц/2Мб/800МГц 775-LGA, Kingston DDR-II DIMM 512Mb, DVD
		RAM&DVD±R/RW&CDRW ASUS, мышь Genius NetScroll 110 Optical,
		клавиатура Genius WD-701, монитор Samsung 743 N; Проектор (1 шт):
		Acer Projector P1200 (DLP, 2600 люмен, 3700:1, 1024 x 768, D-Sub, HDMI,
		RCA, S-Video, USB, ПДУ); Проекционный экран SPM-1103 (1 шт).
		Лицензионные: Windows (Microsoft: 43807***, 41902***) Свободно
		распространяемые: Open Office
		Системный блок: Intel Core2 DuoE6400/2*512 MB/120GbP5B-
		VM/3C905CX-TX-M/Kb (4 шт); Celeron 2000 MHz 256 Mb 40Gb (1 шт);
		Celeron D 330 2.66 GHz/3200 256 Mb (1 шт); Монитор: 18.5" BenQ
		GL955A (LCD, Wide, 1366x768, D-Sub) (1 шт); Samsung 743N (1 шт); ТFТ
		19" Samsung 940BF (2 шт); Samsung Sync Master 797 MB (2 шт); ПК в
		составе (4 шт): корпус Minitower INWIN V500 Micro ATX 350W (M/B
Самостоятельная		ASUSTEK P5B-MX (RTL) Socket775, CPU Intel Core 2 Duo E4600 BOX 2.4
работа студента		ГГц/2Мб/800МГц 775-LGA, Kingston DDR-II DIMM 512Mb, DVD
риссти студенти	(3)	RAM&DVD±R/RW&CDRW ASUS, мышь Genius NetScroll 110 Optical,
		клавиатура Genius WD-701, монитор Samsung 743 N; Проектор (1 шт):
		Acer Projector P1200 (DLP, 2600 люмен, 3700:1, 1024 x 768, D-Sub, HDMI,
		RCA, S-Video, USB, ПДУ); Проекционный экран SPM-1103 (1 шт).
		Лицензионные: Windows (Microsoft: 43807***, 41902***) Свободно
		распространяемые: Open Office
		Системный блок: Intel Core2 DuoE6400/2*512 MB/120GbP5B-
Зачет		VM/3C905CX-TX-M/Kb (4 шт); Celeron 2000 MHz 256 Mb 40Gb (1 шт);
	L	Y 1911 3 C 7 C 3 C A - 1 A - 1911 1 KO (4 m 1), COROTON 2000 1911 12 230 1910 4000 (1 m 1),

Celeron D 330 2.66 GHz/3200 256 Mb (1 шт); Монитор: 18.5" BenQ GL955A (LCD, Wide, 1366x768, D-Sub) (1 шт); Samsung 743N (1 шт); TFT 19" Samsung 940BF (2 шт); Samsung Sync Master 797 MB (2 шт); ПК в составе (4 шт): корпус Minitower INWIN V500 Micro ATX 350W (M/B ASUSTEK P5B-MX (RTL) Socket775, CPU Intel Core 2 Duo E4600 BOX 2.4 ГГц/2Мб/800МГц 775-LGA, Kingston DDR-II DIMM 512Mb, DVD RAM&DVD±R/RW&CDRW ASUS, мышь Genius NetScroll 110 Optical, клавиатура Genius WD-701, монитор Samsung 743 N; Проектор (1 шт): Acer Projector P1200 (DLP, 2600 люмен, 3700:1, 1024 x 768, D-Sub, HDMI, RCA, S-Video, USB, ПДУ); Проекционный экран SPM-1103 (1 шт). Лицензионные: Windows (Місгоsoft: 43807***, 41902***) Свободно распространяемые: Open Office