ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога ПОУБГУ ПОЖНО-Ураньского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдил: Горожанения А. Н. Пользователь: догогланкілая [для подписания: 17.04.2025]

А. Н. Горожанкин

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М5.12.01 Монтаж, наладка и эксплуатация энергоустановок возобновляемой энергетики

для направления 13.04.02 Электроэнергетика и электротехника **уровень** Магистратура

магистерская программа Комплексное использование возобновляемых источников энергии

форма обучения очная

кафедра-разработчик Электрические станции, сети и системы электроснабжения

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 13.04.02 Электроэнергетика и электротехника, утверждённым приказом Минобрнауки от 28.02.2018 № 147

Зав.кафедрой разработчика, д.техн.н., доц.

Разработчик программы, к.техн.н., доц., доцент

А. Н. Горожанкин

А. С. Мартьянов

1. Цели и задачи дисциплины

Цель дисциплины: Целью дисциплины является подготовка выпускника, способного решать в определенном объеме технические вопросы и задачи, связанные с проектированием, изготовлением, внедрением, монтажом, пусконаладкой, эксплуатацией и обслуживанием агрегатов на базе альтернативных и возобновляемых источников энергии (ВИЭ). Задачи дисциплины: – изучить историю развития, мировые тенденции, состояние развития, ресурсы, достоинства и недостатки, классификацию и конструкции устройств, преобразующих возобновляемые источники в электрическую и/или тепловую энергию; – научить студентов разбираться в физике процессов и явлений, приводящих к появлению возобновляемых потоков энергии (солнечной, ветровой, биомассы, теплоты земли и т.п.); – изучить основы проектирования и принципы изготовления устройств, преобразующих возобновляемые потоки энергии в механическую, тепловую и электрическую энергии; - научить студента грамотно определять энергетический потенциал конкретной конструкции на основе ВИЭ; – овладеть вопросами сопряжения нескольких энергогенерирующих агрегатов, – научить студента рассчитать экономическую эффективность использования устройств на основе возобновляемых источников энергии для энергоснабжения потребителей; – научиться разбираться в многообразии энергосберегающих приборов и их назначении и особенностях; – научиться оформлять и подавать заявки на патентование; – научиться писать статьи и отправлять их в журналы РИНЦ, ВАК, Scopus, Web of Science (на русском и/или на английском языках); – уметь составлять технико-экономическое обоснование внедрения единичных генерирующих мощностей и парков.

Краткое содержание дисциплины

Теоретические положения производства, передачи и распределения электроэнергии от установок на базе возобновляемых источников энергии. Методики и процедуры системы менеджмента качества, стандартов организации. Основные принципы проектирования и эксплуатации установок на базе возобновляемых источников энергии. Системы автоматизированного проектирования объектов энергетики. Конструирование объектов энергетики на базе возобновляемых источников энергии в системах автоматизированного проектирования. Типовые проектные решения системы электроснабжения объектов на основе возобновляемых источников энергии. Типовые проектные решения и разработки разделов по использованию возобновляемых ресурсов на различных стадиях проектирования. Правила проектирования системы электроснабжения на базе ВЭУ как объекта капитального строительства. Основные понятия и соответствие понятий САПР. Состав и структура САПР. Применение компьютера от этапа концептуального проектирования до выпуска готового изделия. Solidworks, основные функциональные возможности. Основы трехмерного моделирование, создание простейшей детали. Операции создания и редактирование объема. Вспомогательные построения в пространстве. Создание сборок, взаимосвязи между деталями. Создание чертежей из трехмерных моделей. Автоматизация при работе со сборочными чертежами. Основы прочностного анализа трехмерных моделей. Основы теплового расчета трехмерных моделей.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: проблемные ситуации при монтаже,
	наладке и эксплуатации энергоустановок на базе
УК-1 Способен осуществлять критический	ВИЭ
анализ проблемных ситуаций на основе	Умеет: анализировать причины проблемных
системного подхода, вырабатывать стратегию	ситуаций при эксплуатации энергоустановок
действий	Имеет практический опыт: системного подхода к
	решению проблемных ситуаций при монтаже и
	эксплуатации энергоустановок ВИЭ

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
1	Комбинированные энергоустановки на базе
энергопреобразование биомассы	возобновляемых источников энергии

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Химическое и термическое энергопреобразование биомассы	Знает: проблемную ситуацию и осуществляет ее декомпозицию на отдельные задачи. Умеет: вырабатывать стратегию решения поставленной задачи (составляет модель, определяет ограничения, вырабатывает критерии, оценивает необходимость дополнительной информации) Имеет практический опыт: формирования возможных вариантов задач

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 36,25 ч. контактной работы

	Bcero	Распределение по семестрам в часах
Вид учебной работы	часов	Номер семестра
		2
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	32	32
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	35,75	35,75

Трёхмерное моделирование и разработка конструкторской документации по индивидуальному заданию.	35,75	35.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
	_	Всего	Л	П3	ЛР	
1	Основы проектирования и эксплуатации оборудования возобновляемой энергетики	32	16	0	16	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		Теоретические положения производства, передачи и распределения электроэнергии от установок на базе возобновляемых источников энергии	2
2	l I I	Методики и процедуры системы менеджмента качества, стандартов организации	2
3		Основные принципы проектирования и эксплуатации установок на базе возобновляемых источников энергии	2
4	1	Системы автоматизированного проектирования объектов энергетики	2
5		Конструирование объектов энергетики на базе возобновляемых источников энергии в системах автоматизированного проектирования	2
6		Типовые проектные решения системы электроснабжения объектов на основе возобновляемых источников энергии	2
7		Типовые проектные решения и разработки разделов по использованию возобновляемых ресурсов на различных стадиях проектирования	2
8		Правила проектирования системы электроснабжения на базе ВЭУ как объекта капитального строительства	2

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

No	№	Наименование или краткое содержание лабораторной работы	Кол-во			
занятия	раздела	паименование или краткое содержание лаоораторной раооты				
1	1	накомство с SolidWorks. Создание детали				
2	1	Импорт трехмерных деталей и создание сборок	2			
3	1	Компоновка изделия, работа в пространстве сборке	2			
4	1	омпоновка изделия, разработка моделей элементов конструкции				
5	1	Компоновка изделия, разработка корпусных деталей	2			
6	1	Компоновка изделия, добавление крепежа и установочных элементов	2			
7	1	Работа с чертежами. Разработка сборочного чертежа	2			
8	1	Работа с чертежами. Разработка чертежей деталей	2			

5.4. Самостоятельная работа студента

E	Выполнение СРС		
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов
Трёхмерное моделирование и разработка конструкторской документации по индивидуальному заданию.	Основная литература 1. Прохоренко В.П. SolidWorks 2005/ Практическое руководство. — М.: «Бином-пресс», 2009 г. — 512 с.: ил. 2. Алямовский А.А. SolidWorks. Компьютерное моделирование в инженерной практике. / Алямовский А.А. и др. — СПб.: БХВ-Петербург, 2008 800 с.: ил. 3. Саврушев Э.Ц. Р-САD 2006. руководство схемотехника, администратора библиотек, конструктора. — М.:ООО «Бином-Пресс», 2007 г. — 768 с.:ил. — ISBN 978-5-9518-0195-1 Дополнительная литература: 1. SolidWorks. Оформление чертежей по ЕСКД. М.:SWR — 2007, 190 стр.:ил. 2. Тику Шам Эффективная работа в SolidWorks 2005. СПб.: Питер, 2006, 816 с.: ил. 3. Прерис А.М. SolidWorks 2005/2006. СПб.: Питер, 2006 — 528 с.:ил. 4. Алямовский А.А. SolidWorks/COSMOSWorks Инженерный анализ методом конечных элементов /Алямовский А.А. и др. М.:ДМП Пресс-Москва, 2004, 426 с.: ил. 5. Разевиг, В. Д. Система Р-САD 2000: справочник команд / В. Д. Разевиг. — М.: Горячая линия-Телеком, 2001. — 256 с.: ил. — Библиогр.: с. 255. — ISBN 5- 93517-042-6 6. Стешенко, В.Б. Р-САD. Технология проектирования печатных плат. СПб.:БХВ-Петербург, 2003. — 720 с.: ил. — ISBN 5-941157-292-1	2	35,75

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	2	Текущий	Задание 1.	1	100	Наибольшее количество баллов за	зачет

		контроль	Знакомство с SolidWorks. Создание детали			задание — 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу — 40 баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель не содержит неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель содержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество,	
2	2	Текущий контроль	Задание 2. Импорт трехмерных деталей и создание сборок	1	100	равное 100. Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу — 40 баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель не содержит неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель содержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество, равное 100.	
3	2	Текущий контроль	Задание 3. Компоновка изделия, работа в пространстве сборке	1	100	Наибольшее количество баллов за задание – 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу – 40	зачет

						баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество, равное 100.	
4	2	Текущий контроль	Задание 4. Компоновка изделия, разработка моделей элементов конструкции	1	100	Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу — 40 баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель не содержит неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель содержит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений — 0 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество, равное 100.	
5	2	Текущий контроль	Задание 5. Компоновка изделия, разработка корпусных деталей	1	100	Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу — 40 баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных	зачет

						размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель не содержит неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель сдержит более 2х неопределенных взаимосвязей и ограничений — 0 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество, равное 100.	
6	2	Текущий контроль	Задание 6. Компоновка изделия, добавление крепежа и установочных элементов	1	100	Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Внешний облик и форма разработанной модели соответствует прототипу — 40 баллов. Модель не содержит ошибок при перестроении - 20 баллов. Модель не содержит неопределенных размеров -20 баллов. Модель содержит 1-2 неопределенных размеров - 10 баллов. Модель сдержит более 2х неопределенных размеров - 0 баллов. Модель с с режит неопределенных взаимосвязей и ограничений - 20 баллов. Модель содержит 1-2 неопределенных взаимосвязей и ограничений - 10 баллов. Модель с режит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Модель с режит более 2х неопределенных взаимосвязей и ограничений - 10 баллов. Если сумма баллов за задание получается более 100, то считается, что за задание студент получает максимально возможное количество, равное 100.	
7	2	Текущий контроль	Задание 7. Работа с чертежами. Разработка сборочного чертежа	1	100	Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Чертеж содержит правильно заполненные рамку и основную надпись - 10 баллов. Чертеж содержит текстовые поля, автоматически заполняемые из свойств модели- 10 баллов. Набор и расположение видов на чертеже достаточны для понимания конструкции — 40 баллов.	зачет

						требования - 10 баллов. Чертеж содержит правильное обозначения позиций - 10 баллов. Чертеж содержит правильное изображение штриховки - 10 баллов. Чертеж содержит таблицу компонентов для составления спецификации - 10 баллов.	
8	2	Текущий контроль	Задание 8. Работа с чертежами. Разработка чертежей деталей	1	100	Наибольшее количество баллов за задание — 100, которые складываются из следующих компонентов: Набор и расположение видов на чертеже достаточны для понимания формы детали — 30 баллов. Чертеж содержит необходимое для изготовления количество размеров - 10 баллов. Чертеж содержит заполненную рамку и основную надпись - 10 баллов. Чертеж содержит технические требования - 10 баллов. Чертеж содержит требования к допускам размеров - 10 баллов. Чертеж содержит требования к отклонениям форм и расположению поверхностей - 10 баллов. Чертеж содержит требования к шероховатости поверхностей - 10 баллов. Чертеж содержит указания на материал и требования к покрытиям - 10 баллов.	зачет
9	2	Проме- жуточная аттестация	Зачет	-	100	Баллы рассчитываются по результатам мероприятий текущего контроля согласно положению о БРС ЮУрГУ	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания			
зачет	Оценка выставляется по результатам контрольных мероприятий согласно "Положению о БРС ЮУрГУ", п. 2.4 - 2.6.	В соответствии с пп. 2.5, 2.6 Положения			

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения				№ KM 123456789				
IVK_I	K-1 Знает: проблемные ситуации при монтаже, наладке и эксплуатации энергоустановок на базе ВИЭ		+	+++	+	+	Ĭ	+	
УК-1	Умеет: анализировать причины проблемных ситуаций при эксплуатации энергоустановок	+	+-	++	+	+		+	
УК-1	Имеет практический опыт: системного подхода к решению проблемных ситуаций при монтаже и эксплуатации энергоустановок ВИЭ	+	+-	+-+	-+	+		+	

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Юрков, Н. К. Технология производства электронных средств [Текст] учебник для вузов по направлению 211000 "Конструирование и технология электрон. средств" Н. К. Юрков. 2-е изд., испр. и доп. СПб. и др.: Лань, 2014. 474 с. ил.
 - 2. Фрумкин, Г. Д. Расчет и конструирование радиоаппаратуры Учеб. для сред. спец. учеб. заведений радиотехн. спец. 5-е изд., перераб. и доп. М.: Высшая школа, 1989. 463 с. ил.
- б) дополнительная литература:
 - 1. Мазеин, П. Г. Сквозное автоматизированное проектирование в САD/САМ системах [Текст] учеб. пособие П. Г. Мазеин, А. В. Шаламов; Юж.-Урал. гос. ун-т, Каф. Оборудование и инструмент компьютеризир. пр-ва; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2002. 78, [1] с. ил. электрон. версия
 - 2. Ли, К. Основы САПР: CAD/CAM/CAE К. Ли. СПб. и др.: Питер, 2004. 559 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. SolidWorks: Компьютерное моделирование в инженерной практике А. А. Алямовский, А. А. Собачкин, Е. В. Одинцов и др. СПб.: БХВ-Петербург, 2005. 799 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. SolidWorks: Компьютерное моделирование в инженерной практике А. А. Алямовский, А. А. Собачкин, Е. В. Одинцов и др. - СПб.: БХВ-Петербург, 2005. - 799 с.

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Microsoft windows (SoftwareAssurancePack Academic 1 Year Mиacc)(31.12.2019)
- 2. Microsoft-Office(бессрочно)
- 3. Dassault Systèmes-SolidWorks Education Edition 500 CAMPUS(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. -Информационные ресурсы ФГУ ФИПС(бессрочно)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
<u> </u>		Персональный компьютер с доступом в сеть "Интернет", проектор, мультимедийное оборудование
Лабораторные занятия		Персональный компьютер с доступом в сеть "Интернет", проектор, мультимедийное оборудование
Лекции		Персональный компьютер с доступом в сеть "Интернет", проектор, мультимедийное оборудование